Convertible subspaces that arise from different numberings of the vertices of a graph
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/9093 |
Resumo: | In this paper, we describe subspaces of generalized Hessenberg matrices where the determinant is convertible into the permanent by affixing ± signs. These subspaces can arise from different numberings of the vertices of a graph. With this numbering process, we obtain some well-known sequences of integers. For instance, in the case of a path of length n, we prove that the number of these subspaces is the (n + 1)th Fibonacci number. |
id |
RCAP_9dc9664b51e542bafe31a13611080480 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/9093 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Convertible subspaces that arise from different numberings of the vertices of a graphDeterminantPermanentHessenberg matrixIn this paper, we describe subspaces of generalized Hessenberg matrices where the determinant is convertible into the permanent by affixing ± signs. These subspaces can arise from different numberings of the vertices of a graph. With this numbering process, we obtain some well-known sequences of integers. For instance, in the case of a path of length n, we prove that the number of these subspaces is the (n + 1)th Fibonacci number.Ars Math. Contemp.uBibliorumCruz, Henrique F. DaInácio, IldaSerôdio, Rogério2020-02-07T09:49:32Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9093eng1855-3974https://doi.org/ 10.26493/1855- 3974.1477.1c7info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:39Zoai:ubibliorum.ubi.pt:10400.6/9093Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:17.939773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Convertible subspaces that arise from different numberings of the vertices of a graph |
title |
Convertible subspaces that arise from different numberings of the vertices of a graph |
spellingShingle |
Convertible subspaces that arise from different numberings of the vertices of a graph Cruz, Henrique F. Da Determinant Permanent Hessenberg matrix |
title_short |
Convertible subspaces that arise from different numberings of the vertices of a graph |
title_full |
Convertible subspaces that arise from different numberings of the vertices of a graph |
title_fullStr |
Convertible subspaces that arise from different numberings of the vertices of a graph |
title_full_unstemmed |
Convertible subspaces that arise from different numberings of the vertices of a graph |
title_sort |
Convertible subspaces that arise from different numberings of the vertices of a graph |
author |
Cruz, Henrique F. Da |
author_facet |
Cruz, Henrique F. Da Inácio, Ilda Serôdio, Rogério |
author_role |
author |
author2 |
Inácio, Ilda Serôdio, Rogério |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Cruz, Henrique F. Da Inácio, Ilda Serôdio, Rogério |
dc.subject.por.fl_str_mv |
Determinant Permanent Hessenberg matrix |
topic |
Determinant Permanent Hessenberg matrix |
description |
In this paper, we describe subspaces of generalized Hessenberg matrices where the determinant is convertible into the permanent by affixing ± signs. These subspaces can arise from different numberings of the vertices of a graph. With this numbering process, we obtain some well-known sequences of integers. For instance, in the case of a path of length n, we prove that the number of these subspaces is the (n + 1)th Fibonacci number. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z 2020-02-07T09:49:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/9093 |
url |
http://hdl.handle.net/10400.6/9093 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1855-3974 https://doi.org/ 10.26493/1855- 3974.1477.1c7 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Ars Math. Contemp. |
publisher.none.fl_str_mv |
Ars Math. Contemp. |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136385298333696 |