Convertible subspaces that arise from different numberings of the vertices of a graph

Detalhes bibliográficos
Autor(a) principal: Cruz, Henrique F. Da
Data de Publicação: 2019
Outros Autores: Inácio, Ilda, Serôdio, Rogério
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/9093
Resumo: In this paper, we describe subspaces of generalized Hessenberg matrices where the determinant is convertible into the permanent by affixing ± signs. These subspaces can arise from different numberings of the vertices of a graph. With this numbering process, we obtain some well-known sequences of integers. For instance, in the case of a path of length n, we prove that the number of these subspaces is the (n + 1)th Fibonacci number.
id RCAP_9dc9664b51e542bafe31a13611080480
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/9093
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Convertible subspaces that arise from different numberings of the vertices of a graphDeterminantPermanentHessenberg matrixIn this paper, we describe subspaces of generalized Hessenberg matrices where the determinant is convertible into the permanent by affixing ± signs. These subspaces can arise from different numberings of the vertices of a graph. With this numbering process, we obtain some well-known sequences of integers. For instance, in the case of a path of length n, we prove that the number of these subspaces is the (n + 1)th Fibonacci number.Ars Math. Contemp.uBibliorumCruz, Henrique F. DaInácio, IldaSerôdio, Rogério2020-02-07T09:49:32Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9093eng1855-3974https://doi.org/ 10.26493/1855- 3974.1477.1c7info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:39Zoai:ubibliorum.ubi.pt:10400.6/9093Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:17.939773Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Convertible subspaces that arise from different numberings of the vertices of a graph
title Convertible subspaces that arise from different numberings of the vertices of a graph
spellingShingle Convertible subspaces that arise from different numberings of the vertices of a graph
Cruz, Henrique F. Da
Determinant
Permanent
Hessenberg matrix
title_short Convertible subspaces that arise from different numberings of the vertices of a graph
title_full Convertible subspaces that arise from different numberings of the vertices of a graph
title_fullStr Convertible subspaces that arise from different numberings of the vertices of a graph
title_full_unstemmed Convertible subspaces that arise from different numberings of the vertices of a graph
title_sort Convertible subspaces that arise from different numberings of the vertices of a graph
author Cruz, Henrique F. Da
author_facet Cruz, Henrique F. Da
Inácio, Ilda
Serôdio, Rogério
author_role author
author2 Inácio, Ilda
Serôdio, Rogério
author2_role author
author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Cruz, Henrique F. Da
Inácio, Ilda
Serôdio, Rogério
dc.subject.por.fl_str_mv Determinant
Permanent
Hessenberg matrix
topic Determinant
Permanent
Hessenberg matrix
description In this paper, we describe subspaces of generalized Hessenberg matrices where the determinant is convertible into the permanent by affixing ± signs. These subspaces can arise from different numberings of the vertices of a graph. With this numbering process, we obtain some well-known sequences of integers. For instance, in the case of a path of length n, we prove that the number of these subspaces is the (n + 1)th Fibonacci number.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
2020-02-07T09:49:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/9093
url http://hdl.handle.net/10400.6/9093
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1855-3974
https://doi.org/ 10.26493/1855- 3974.1477.1c7
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Ars Math. Contemp.
publisher.none.fl_str_mv Ars Math. Contemp.
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136385298333696