Alternative smoothing strategies in smooth partial least squares path modelling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/99737 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRM |
id |
RCAP_9ec2899fecaaeacb235385ba4b3d4494 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/99737 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Alternative smoothing strategies in smooth partial least squares path modellingPLS-PMNonlinearPLSsSmoothingMonte-Carlo SimulationNatural Cubic SplinesP-SplinesThin Plate Regression SplinesDissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRMThe assessment of nonlinear relationships in the context of Partial Least Squares Path Modelling (PLS-PM) has received a growing interest in recent years. One important contribution to this subject has been the work of Henseler, Fassot, Dijkstra and Wilson (2012) on the analysis of four different approaches to quadratic effects. The Smooth Partial Least Squares (PLSs) estimation technique studied in this work removes any assumptions on the structure of the nonlinear relationships between latent variables, by applying smoothing spline techniques to the structural model. Performance results of the PLSs show that it is a powerful tool in the context of predictive research, for instance to support the definition of targeted policies. Building from the hybrid approach to the PLS algorithm introduced by Wold (1982), we compare the performance of alternative spline designs, including natural cubic splines, P-Splines and Thin Plate Regression Splines (TPRS). For this purpose, Monte-Carlo simulations are carried with a conceptual model drawn from a comprehensive set of nonlinear relationships, in different sample sizes. All model configurations are compared using Root Mean Squared Error (RMSE) and absolute bias results. The benchmarking exercise shows that, in most contexts, P-Splines perform slightly better than TPRS and natural cubic splines.Mendes, Jorge MoraisRUNLopes, Tiago Guia Ribeiro2020-06-22T09:33:23Z2020-06-022020-06-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/99737TID:202487199enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:46:30Zoai:run.unl.pt:10362/99737Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:39:14.263079Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Alternative smoothing strategies in smooth partial least squares path modelling |
title |
Alternative smoothing strategies in smooth partial least squares path modelling |
spellingShingle |
Alternative smoothing strategies in smooth partial least squares path modelling Lopes, Tiago Guia Ribeiro PLS-PM Nonlinear PLSs Smoothing Monte-Carlo Simulation Natural Cubic Splines P-Splines Thin Plate Regression Splines |
title_short |
Alternative smoothing strategies in smooth partial least squares path modelling |
title_full |
Alternative smoothing strategies in smooth partial least squares path modelling |
title_fullStr |
Alternative smoothing strategies in smooth partial least squares path modelling |
title_full_unstemmed |
Alternative smoothing strategies in smooth partial least squares path modelling |
title_sort |
Alternative smoothing strategies in smooth partial least squares path modelling |
author |
Lopes, Tiago Guia Ribeiro |
author_facet |
Lopes, Tiago Guia Ribeiro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mendes, Jorge Morais RUN |
dc.contributor.author.fl_str_mv |
Lopes, Tiago Guia Ribeiro |
dc.subject.por.fl_str_mv |
PLS-PM Nonlinear PLSs Smoothing Monte-Carlo Simulation Natural Cubic Splines P-Splines Thin Plate Regression Splines |
topic |
PLS-PM Nonlinear PLSs Smoothing Monte-Carlo Simulation Natural Cubic Splines P-Splines Thin Plate Regression Splines |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Marketing Research e CRM |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-22T09:33:23Z 2020-06-02 2020-06-02T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/99737 TID:202487199 |
url |
http://hdl.handle.net/10362/99737 |
identifier_str_mv |
TID:202487199 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138008424775680 |