Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD Technique

Detalhes bibliográficos
Autor(a) principal: Fayomi,O. S. I.
Data de Publicação: 2017
Outros Autores: Popoola,A. P. I., Kanyane,L. R., Monyai,T.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042017000600005
Resumo: The incorporation of composite and eco-friendly particles or fluids to develop new engineering materials has recently changed the coating world. In this study, a Zn-TiO2TiB2 ternary alloy was produced from a sulphate bath on a mild steel substrate. Solanum tuberosum (ST) was later introduced to the bath to evaluate the effect of the organic additive on the ternary alloy. The study was conducted under constant plating time and current density. The fabricated matrix was systematically investigated using scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) for structural properties. The micro hardness and anti-corrosion properties of the deposits were studied using, respectively, a diamond base micro hardness tester and potentiodynamic polarization method. The anti-wear properties and thermal stability of the electrodeposited alloy were studied using a MTR-300 abrasive tester and an isothermal furnace at 250 °C. From the observed result, the coatings presented good stability, especially for Zn-TiO2-TiB2-ST, as compared to the Zn-TiO2-TiB2 coating. The addition of ST improved the hardness properties of the matrix from 182.4 to197.2 HV, and the corrosion rate from 0.9805 to 0.7711 mm/yr. This work established that codeposition of mild steel with TiO2/TiB2/ST is promising in anti-wear and corrosion resistance properties.
id RCAP_9f59e7e41323e03b34320765b20738fc
oai_identifier_str oai:scielo:S0872-19042017000600005
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD TechniqueZn-TiO2-TiB2solanum tuberosum (ST)electrodepositionstructural propertiesThe incorporation of composite and eco-friendly particles or fluids to develop new engineering materials has recently changed the coating world. In this study, a Zn-TiO2TiB2 ternary alloy was produced from a sulphate bath on a mild steel substrate. Solanum tuberosum (ST) was later introduced to the bath to evaluate the effect of the organic additive on the ternary alloy. The study was conducted under constant plating time and current density. The fabricated matrix was systematically investigated using scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) for structural properties. The micro hardness and anti-corrosion properties of the deposits were studied using, respectively, a diamond base micro hardness tester and potentiodynamic polarization method. The anti-wear properties and thermal stability of the electrodeposited alloy were studied using a MTR-300 abrasive tester and an isothermal furnace at 250 °C. From the observed result, the coatings presented good stability, especially for Zn-TiO2-TiB2-ST, as compared to the Zn-TiO2-TiB2 coating. The addition of ST improved the hardness properties of the matrix from 182.4 to197.2 HV, and the corrosion rate from 0.9805 to 0.7711 mm/yr. This work established that codeposition of mild steel with TiO2/TiB2/ST is promising in anti-wear and corrosion resistance properties.Sociedade Portuguesa de Electroquímica2017-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042017000600005Portugaliae Electrochimica Acta v.35 n.6 2017reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042017000600005Fayomi,O. S. I.Popoola,A. P. I.Kanyane,L. R.Monyai,T.info:eu-repo/semantics/openAccess2024-02-06T17:07:25Zoai:scielo:S0872-19042017000600005Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:20:20.608015Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD Technique
title Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD Technique
spellingShingle Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD Technique
Fayomi,O. S. I.
Zn-TiO2-TiB2
solanum tuberosum (ST)
electrodeposition
structural properties
title_short Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD Technique
title_full Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD Technique
title_fullStr Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD Technique
title_full_unstemmed Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD Technique
title_sort Effect of Incorporating a Biodegradable Ecofriendly Additive in Pursuit of Improved Anti-Corrosion, Microstructure and Mechanical Properties of a Zn-based TiO2/TiB2 Coating by DAECD Technique
author Fayomi,O. S. I.
author_facet Fayomi,O. S. I.
Popoola,A. P. I.
Kanyane,L. R.
Monyai,T.
author_role author
author2 Popoola,A. P. I.
Kanyane,L. R.
Monyai,T.
author2_role author
author
author
dc.contributor.author.fl_str_mv Fayomi,O. S. I.
Popoola,A. P. I.
Kanyane,L. R.
Monyai,T.
dc.subject.por.fl_str_mv Zn-TiO2-TiB2
solanum tuberosum (ST)
electrodeposition
structural properties
topic Zn-TiO2-TiB2
solanum tuberosum (ST)
electrodeposition
structural properties
description The incorporation of composite and eco-friendly particles or fluids to develop new engineering materials has recently changed the coating world. In this study, a Zn-TiO2TiB2 ternary alloy was produced from a sulphate bath on a mild steel substrate. Solanum tuberosum (ST) was later introduced to the bath to evaluate the effect of the organic additive on the ternary alloy. The study was conducted under constant plating time and current density. The fabricated matrix was systematically investigated using scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) for structural properties. The micro hardness and anti-corrosion properties of the deposits were studied using, respectively, a diamond base micro hardness tester and potentiodynamic polarization method. The anti-wear properties and thermal stability of the electrodeposited alloy were studied using a MTR-300 abrasive tester and an isothermal furnace at 250 °C. From the observed result, the coatings presented good stability, especially for Zn-TiO2-TiB2-ST, as compared to the Zn-TiO2-TiB2 coating. The addition of ST improved the hardness properties of the matrix from 182.4 to197.2 HV, and the corrosion rate from 0.9805 to 0.7711 mm/yr. This work established that codeposition of mild steel with TiO2/TiB2/ST is promising in anti-wear and corrosion resistance properties.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042017000600005
url http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042017000600005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042017000600005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Portuguesa de Electroquímica
publisher.none.fl_str_mv Sociedade Portuguesa de Electroquímica
dc.source.none.fl_str_mv Portugaliae Electrochimica Acta v.35 n.6 2017
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137291554258944