Waterborne latex with renewable oil sources

Detalhes bibliográficos
Autor(a) principal: Pinto, Sara Filipa Leal
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10198/11515
Resumo: The synthesis of polymers from renewable resource monomers is receiving an increasing attention, due to the high price and future depletion of fossil fuels, together with the concerns regarding environmental sustainability. Among the existing renewable raw materials, vegetable oils appear as one of the most interesting alternatives for the chemical and polymer industry. Sunflower is grown in large extent in the Mediterranean basin, being Spain and Portugal ones of the major producing countries. Therefore, this vegetable oil can be considered as a promising candidate as a biobased starting material. Besides, any progress towards sustainability achieved by the use of renewable feedstocks will be greatly improved by the use of a solvent‐free environmentally friendly technology, such as emulsion polymerization. Thus, the aim of this project is to synthesize waterborne polymers based on sunflower oil and probe their potential as binders for the coating industry. Sunflower oil is a triglyceride, which main components are oleic acid (C18, one unsaturation, 25% aprox) and linoleic (C18, two non‐conjugated unsaturations, 65 % aprox). Those double bonds are not reactive enough for effective free radical polymerization, so the incorporation of polymerizable moiety, such as acrylic or vinyl groups, must be achieved. In the first part of this project the synthesis of the sunflower oil macromonomer (SFOM) was studied. Stable latexes with considerable solids content were synthesized and miniemulsion polymerization was the technique used for the synthesis of the latex. The resulting polymer latex was analyzed in terms of conversion, particle size and microstructural properties. Furthermore the mechanical properties of the dried films were presented.
id RCAP_9fb65a65afcb270254a2e1c644c16718
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/11515
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Waterborne latex with renewable oil sourcesSunflower oilFatty acidsMiniemulsion polymerizationThe synthesis of polymers from renewable resource monomers is receiving an increasing attention, due to the high price and future depletion of fossil fuels, together with the concerns regarding environmental sustainability. Among the existing renewable raw materials, vegetable oils appear as one of the most interesting alternatives for the chemical and polymer industry. Sunflower is grown in large extent in the Mediterranean basin, being Spain and Portugal ones of the major producing countries. Therefore, this vegetable oil can be considered as a promising candidate as a biobased starting material. Besides, any progress towards sustainability achieved by the use of renewable feedstocks will be greatly improved by the use of a solvent‐free environmentally friendly technology, such as emulsion polymerization. Thus, the aim of this project is to synthesize waterborne polymers based on sunflower oil and probe their potential as binders for the coating industry. Sunflower oil is a triglyceride, which main components are oleic acid (C18, one unsaturation, 25% aprox) and linoleic (C18, two non‐conjugated unsaturations, 65 % aprox). Those double bonds are not reactive enough for effective free radical polymerization, so the incorporation of polymerizable moiety, such as acrylic or vinyl groups, must be achieved. In the first part of this project the synthesis of the sunflower oil macromonomer (SFOM) was studied. Stable latexes with considerable solids content were synthesized and miniemulsion polymerization was the technique used for the synthesis of the latex. The resulting polymer latex was analyzed in terms of conversion, particle size and microstructural properties. Furthermore the mechanical properties of the dried films were presented.Dias, RolandoBarandiaran, María J.Biblioteca Digital do IPBPinto, Sara Filipa Leal2015-01-08T11:03:38Z20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10198/11515TID:201456818porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:27:16Zoai:bibliotecadigital.ipb.pt:10198/11515Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:02:06.089257Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Waterborne latex with renewable oil sources
title Waterborne latex with renewable oil sources
spellingShingle Waterborne latex with renewable oil sources
Pinto, Sara Filipa Leal
Sunflower oil
Fatty acids
Miniemulsion polymerization
title_short Waterborne latex with renewable oil sources
title_full Waterborne latex with renewable oil sources
title_fullStr Waterborne latex with renewable oil sources
title_full_unstemmed Waterborne latex with renewable oil sources
title_sort Waterborne latex with renewable oil sources
author Pinto, Sara Filipa Leal
author_facet Pinto, Sara Filipa Leal
author_role author
dc.contributor.none.fl_str_mv Dias, Rolando
Barandiaran, María J.
Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Pinto, Sara Filipa Leal
dc.subject.por.fl_str_mv Sunflower oil
Fatty acids
Miniemulsion polymerization
topic Sunflower oil
Fatty acids
Miniemulsion polymerization
description The synthesis of polymers from renewable resource monomers is receiving an increasing attention, due to the high price and future depletion of fossil fuels, together with the concerns regarding environmental sustainability. Among the existing renewable raw materials, vegetable oils appear as one of the most interesting alternatives for the chemical and polymer industry. Sunflower is grown in large extent in the Mediterranean basin, being Spain and Portugal ones of the major producing countries. Therefore, this vegetable oil can be considered as a promising candidate as a biobased starting material. Besides, any progress towards sustainability achieved by the use of renewable feedstocks will be greatly improved by the use of a solvent‐free environmentally friendly technology, such as emulsion polymerization. Thus, the aim of this project is to synthesize waterborne polymers based on sunflower oil and probe their potential as binders for the coating industry. Sunflower oil is a triglyceride, which main components are oleic acid (C18, one unsaturation, 25% aprox) and linoleic (C18, two non‐conjugated unsaturations, 65 % aprox). Those double bonds are not reactive enough for effective free radical polymerization, so the incorporation of polymerizable moiety, such as acrylic or vinyl groups, must be achieved. In the first part of this project the synthesis of the sunflower oil macromonomer (SFOM) was studied. Stable latexes with considerable solids content were synthesized and miniemulsion polymerization was the technique used for the synthesis of the latex. The resulting polymer latex was analyzed in terms of conversion, particle size and microstructural properties. Furthermore the mechanical properties of the dried films were presented.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
2015-01-08T11:03:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/11515
TID:201456818
url http://hdl.handle.net/10198/11515
identifier_str_mv TID:201456818
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135258166165504