Notes on the Sasaki metric

Detalhes bibliográficos
Autor(a) principal: Albuquerque, Rui
Data de Publicação: 2019
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/26894
https://doi.org/10.1016/j.exmath.2018.10.005
Resumo: We survey on the geometry of the tangent bundle of a Riemannian manifold, endowed with the classical metric established by S. Sasaki 60 years ago. Following the results of Sasaki, we try to write and deduce them by different means. Questions of vector fields, mainly those arising from the base, are related as invariants of the classical metric, contact and Hermitian structures. Attention is given to the natural notion of extension or complete lift of a vector field, from the base to the tangent manifold. Few results are original, but finally new equations of the mirror map are considered.
id RCAP_9fc69458a3554fdd6e486e40e3a7bc96
oai_identifier_str oai:dspace.uevora.pt:10174/26894
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Notes on the Sasaki metricmétrica de Sasakicampo vectorial Killingespaço tangenteWe survey on the geometry of the tangent bundle of a Riemannian manifold, endowed with the classical metric established by S. Sasaki 60 years ago. Following the results of Sasaki, we try to write and deduce them by different means. Questions of vector fields, mainly those arising from the base, are related as invariants of the classical metric, contact and Hermitian structures. Attention is given to the natural notion of extension or complete lift of a vector field, from the base to the tangent manifold. Few results are original, but finally new equations of the mirror map are considered.Elsevier2020-02-11T11:06:05Z2020-02-112019-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/26894http://hdl.handle.net/10174/26894https://doi.org/10.1016/j.exmath.2018.10.005porR. Albuquerque, Notes on the Sasaki metric, Expositiones Mathematicae, Volume 37, Issue 2, 2019, Pages 207-224.rpa@uevora.pt337Albuquerque, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:21:55Zoai:dspace.uevora.pt:10174/26894Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:17:03.623966Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Notes on the Sasaki metric
title Notes on the Sasaki metric
spellingShingle Notes on the Sasaki metric
Albuquerque, Rui
métrica de Sasaki
campo vectorial Killing
espaço tangente
title_short Notes on the Sasaki metric
title_full Notes on the Sasaki metric
title_fullStr Notes on the Sasaki metric
title_full_unstemmed Notes on the Sasaki metric
title_sort Notes on the Sasaki metric
author Albuquerque, Rui
author_facet Albuquerque, Rui
author_role author
dc.contributor.author.fl_str_mv Albuquerque, Rui
dc.subject.por.fl_str_mv métrica de Sasaki
campo vectorial Killing
espaço tangente
topic métrica de Sasaki
campo vectorial Killing
espaço tangente
description We survey on the geometry of the tangent bundle of a Riemannian manifold, endowed with the classical metric established by S. Sasaki 60 years ago. Following the results of Sasaki, we try to write and deduce them by different means. Questions of vector fields, mainly those arising from the base, are related as invariants of the classical metric, contact and Hermitian structures. Attention is given to the natural notion of extension or complete lift of a vector field, from the base to the tangent manifold. Few results are original, but finally new equations of the mirror map are considered.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-01T00:00:00Z
2020-02-11T11:06:05Z
2020-02-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/26894
http://hdl.handle.net/10174/26894
https://doi.org/10.1016/j.exmath.2018.10.005
url http://hdl.handle.net/10174/26894
https://doi.org/10.1016/j.exmath.2018.10.005
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv R. Albuquerque, Notes on the Sasaki metric, Expositiones Mathematicae, Volume 37, Issue 2, 2019, Pages 207-224.
rpa@uevora.pt
337
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136652921143296