NDN content store and caching policies: performance evaluation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/79557 |
Resumo: | Among various factors contributing to performance of named data networking (NDN), the organization of caching is a key factor and has benefited from intense studies by the networking research community. The performed studies aimed at (1) finding the best strategy to adopt for content caching; (2) specifying the best location, and number of content stores (CS) in the network; and (3) defining the best cache replacement policy. Accessing and comparing the performance of the proposed solutions is as essential as the development of the proposals themselves. The present work aims at evaluating and comparing the behavior of four caching policies (i.e., random, least recently used (LRU), least frequently used (LFU), and first in first out (FIFO)) applied to NDN. Several network scenarios are used for simulation (2 topologies, varying the percentage of nodes of the content stores (5–100), 1 and 10 producers, 32 and 41 consumers). Five metrics are considered for the performance evaluation: cache hit ratio (CHR), network traffic, retrieval delay, interest re-transmissions, and the number of upstream hops. The content request follows the Zipf–Mandelbrot distribution (with skewness factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1.1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.75</mn></mrow></semantics></math></inline-formula>). LFU presents better performance in all considered metrics, except on the NDN testbed, with 41 consumers, 1 producer and a content request rate of 100 packets/s. For the level of content store from 50% to 100%, LRU presents a notably higher performance. Although the network behavior is similar for both skewness factors, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.75</mn></mrow></semantics></math></inline-formula>, the CHR is significantly reduced, as expected. |
id |
RCAP_a07f5a791c17c28ae427990881258cab |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/79557 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
NDN content store and caching policies: performance evaluationCaching replacement policiesNamed data networkingPerformance evaluationScience & TechnologyAmong various factors contributing to performance of named data networking (NDN), the organization of caching is a key factor and has benefited from intense studies by the networking research community. The performed studies aimed at (1) finding the best strategy to adopt for content caching; (2) specifying the best location, and number of content stores (CS) in the network; and (3) defining the best cache replacement policy. Accessing and comparing the performance of the proposed solutions is as essential as the development of the proposals themselves. The present work aims at evaluating and comparing the behavior of four caching policies (i.e., random, least recently used (LRU), least frequently used (LFU), and first in first out (FIFO)) applied to NDN. Several network scenarios are used for simulation (2 topologies, varying the percentage of nodes of the content stores (5–100), 1 and 10 producers, 32 and 41 consumers). Five metrics are considered for the performance evaluation: cache hit ratio (CHR), network traffic, retrieval delay, interest re-transmissions, and the number of upstream hops. The content request follows the Zipf–Mandelbrot distribution (with skewness factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1.1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.75</mn></mrow></semantics></math></inline-formula>). LFU presents better performance in all considered metrics, except on the NDN testbed, with 41 consumers, 1 producer and a content request rate of 100 packets/s. For the level of content store from 50% to 100%, LRU presents a notably higher performance. Although the network behavior is similar for both skewness factors, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.75</mn></mrow></semantics></math></inline-formula>, the CHR is significantly reduced, as expected.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoSilva, Elídio Tomás daMacedo, JoaquimCosta, António2022-03-042022-03-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/79557engSilva, E.T.d.; Macedo, J.M.H.d.; Costa, A.L.D. NDN Content Store and Caching Policies: Performance Evaluation. Computers 2022, 11, 37. https://doi.org/10.3390/computers110300372073-431X2073-431X10.3390/computers1103003737https://www.mdpi.com/2073-431X/11/3/37info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:48:14Zoai:repositorium.sdum.uminho.pt:1822/79557Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:46:25.277860Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
NDN content store and caching policies: performance evaluation |
title |
NDN content store and caching policies: performance evaluation |
spellingShingle |
NDN content store and caching policies: performance evaluation Silva, Elídio Tomás da Caching replacement policies Named data networking Performance evaluation Science & Technology |
title_short |
NDN content store and caching policies: performance evaluation |
title_full |
NDN content store and caching policies: performance evaluation |
title_fullStr |
NDN content store and caching policies: performance evaluation |
title_full_unstemmed |
NDN content store and caching policies: performance evaluation |
title_sort |
NDN content store and caching policies: performance evaluation |
author |
Silva, Elídio Tomás da |
author_facet |
Silva, Elídio Tomás da Macedo, Joaquim Costa, António |
author_role |
author |
author2 |
Macedo, Joaquim Costa, António |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Silva, Elídio Tomás da Macedo, Joaquim Costa, António |
dc.subject.por.fl_str_mv |
Caching replacement policies Named data networking Performance evaluation Science & Technology |
topic |
Caching replacement policies Named data networking Performance evaluation Science & Technology |
description |
Among various factors contributing to performance of named data networking (NDN), the organization of caching is a key factor and has benefited from intense studies by the networking research community. The performed studies aimed at (1) finding the best strategy to adopt for content caching; (2) specifying the best location, and number of content stores (CS) in the network; and (3) defining the best cache replacement policy. Accessing and comparing the performance of the proposed solutions is as essential as the development of the proposals themselves. The present work aims at evaluating and comparing the behavior of four caching policies (i.e., random, least recently used (LRU), least frequently used (LFU), and first in first out (FIFO)) applied to NDN. Several network scenarios are used for simulation (2 topologies, varying the percentage of nodes of the content stores (5–100), 1 and 10 producers, 32 and 41 consumers). Five metrics are considered for the performance evaluation: cache hit ratio (CHR), network traffic, retrieval delay, interest re-transmissions, and the number of upstream hops. The content request follows the Zipf–Mandelbrot distribution (with skewness factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1.1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.75</mn></mrow></semantics></math></inline-formula>). LFU presents better performance in all considered metrics, except on the NDN testbed, with 41 consumers, 1 producer and a content request rate of 100 packets/s. For the level of content store from 50% to 100%, LRU presents a notably higher performance. Although the network behavior is similar for both skewness factors, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0.75</mn></mrow></semantics></math></inline-formula>, the CHR is significantly reduced, as expected. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-04 2022-03-04T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/79557 |
url |
https://hdl.handle.net/1822/79557 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Silva, E.T.d.; Macedo, J.M.H.d.; Costa, A.L.D. NDN Content Store and Caching Policies: Performance Evaluation. Computers 2022, 11, 37. https://doi.org/10.3390/computers11030037 2073-431X 2073-431X 10.3390/computers11030037 37 https://www.mdpi.com/2073-431X/11/3/37 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133033682436096 |