Physiological roles of regulated Ire1 dependent decay

Detalhes bibliográficos
Autor(a) principal: Coelho, Dina S.
Data de Publicação: 2014
Outros Autores: Domingos, Pedro M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/92267
Resumo: Inositol-requiring enzyme 1 (Ire1) is an important transducer of the unfolded protein response (UPR) that is activated by the accumulation of misfolded proteins in the endoplamic reticulum (ER stress). Activated Ire1 mediates the splicing of an intron from the mRNA of Xbp1, causing a frame-shift during translation and introducing a new carboxyl domain in the Xbp1 protein, which only then becomes a fully functional transcription factor. Studies using cell culture systems demonstrated that Ire1 also promotes the degradation of mRNAs encoding mostly ER-targeted proteins, to reduce the load of incoming ER "client" proteins during ER stress. This process was called RIDD (regulated Ire1-dependent decay), but its physiological significance remained poorly characterized beyond cell culture systems. Here we review several recent studies that have highlighted the physiological roles of RIDD in specific biological paradigms, such as photoreceptor differentiation in Drosophila or mammalian liver and endocrine pancreas function. These studies demonstrate the importance of RIDD in tissues undergoing intense secretory function and highlight the physiologic role of RIDD during UPR activation in cells and organisms.
id RCAP_a0acbd6f01c811b906f016d5656275e2
oai_identifier_str oai:run.unl.pt:10362/92267
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Physiological roles of regulated Ire1 dependent decayEndoplasmic reticulum stressIre1RIDDUnfolded protein responseXbp1GeneticsMolecular MedicineGenetics(clinical)Inositol-requiring enzyme 1 (Ire1) is an important transducer of the unfolded protein response (UPR) that is activated by the accumulation of misfolded proteins in the endoplamic reticulum (ER stress). Activated Ire1 mediates the splicing of an intron from the mRNA of Xbp1, causing a frame-shift during translation and introducing a new carboxyl domain in the Xbp1 protein, which only then becomes a fully functional transcription factor. Studies using cell culture systems demonstrated that Ire1 also promotes the degradation of mRNAs encoding mostly ER-targeted proteins, to reduce the load of incoming ER "client" proteins during ER stress. This process was called RIDD (regulated Ire1-dependent decay), but its physiological significance remained poorly characterized beyond cell culture systems. Here we review several recent studies that have highlighted the physiological roles of RIDD in specific biological paradigms, such as photoreceptor differentiation in Drosophila or mammalian liver and endocrine pancreas function. These studies demonstrate the importance of RIDD in tissues undergoing intense secretory function and highlight the physiologic role of RIDD during UPR activation in cells and organisms.Molecular, Structural and Cellular Microbiology (MOSTMICRO)Instituto de Tecnologia Química e Biológica António Xavier (ITQB)RUNCoelho, Dina S.Domingos, Pedro M.2020-02-05T23:31:03Z2014-01-012014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/92267eng1664-8021PURE: 4125781https://doi.org/10.3389/fgene.2014.00076info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:41:04Zoai:run.unl.pt:10362/92267Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:37:28.978645Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Physiological roles of regulated Ire1 dependent decay
title Physiological roles of regulated Ire1 dependent decay
spellingShingle Physiological roles of regulated Ire1 dependent decay
Coelho, Dina S.
Endoplasmic reticulum stress
Ire1
RIDD
Unfolded protein response
Xbp1
Genetics
Molecular Medicine
Genetics(clinical)
title_short Physiological roles of regulated Ire1 dependent decay
title_full Physiological roles of regulated Ire1 dependent decay
title_fullStr Physiological roles of regulated Ire1 dependent decay
title_full_unstemmed Physiological roles of regulated Ire1 dependent decay
title_sort Physiological roles of regulated Ire1 dependent decay
author Coelho, Dina S.
author_facet Coelho, Dina S.
Domingos, Pedro M.
author_role author
author2 Domingos, Pedro M.
author2_role author
dc.contributor.none.fl_str_mv Molecular, Structural and Cellular Microbiology (MOSTMICRO)
Instituto de Tecnologia Química e Biológica António Xavier (ITQB)
RUN
dc.contributor.author.fl_str_mv Coelho, Dina S.
Domingos, Pedro M.
dc.subject.por.fl_str_mv Endoplasmic reticulum stress
Ire1
RIDD
Unfolded protein response
Xbp1
Genetics
Molecular Medicine
Genetics(clinical)
topic Endoplasmic reticulum stress
Ire1
RIDD
Unfolded protein response
Xbp1
Genetics
Molecular Medicine
Genetics(clinical)
description Inositol-requiring enzyme 1 (Ire1) is an important transducer of the unfolded protein response (UPR) that is activated by the accumulation of misfolded proteins in the endoplamic reticulum (ER stress). Activated Ire1 mediates the splicing of an intron from the mRNA of Xbp1, causing a frame-shift during translation and introducing a new carboxyl domain in the Xbp1 protein, which only then becomes a fully functional transcription factor. Studies using cell culture systems demonstrated that Ire1 also promotes the degradation of mRNAs encoding mostly ER-targeted proteins, to reduce the load of incoming ER "client" proteins during ER stress. This process was called RIDD (regulated Ire1-dependent decay), but its physiological significance remained poorly characterized beyond cell culture systems. Here we review several recent studies that have highlighted the physiological roles of RIDD in specific biological paradigms, such as photoreceptor differentiation in Drosophila or mammalian liver and endocrine pancreas function. These studies demonstrate the importance of RIDD in tissues undergoing intense secretory function and highlight the physiologic role of RIDD during UPR activation in cells and organisms.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01
2014-01-01T00:00:00Z
2020-02-05T23:31:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/92267
url http://hdl.handle.net/10362/92267
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1664-8021
PURE: 4125781
https://doi.org/10.3389/fgene.2014.00076
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137991235469312