Positive solutions for parametric nonlinear periodic problems with competing nonlinearities

Detalhes bibliográficos
Autor(a) principal: Aizicovici, S.
Data de Publicação: 2015
Outros Autores: Papageorgiou, N. S., Staicu, V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/14983
Resumo: We consider a nonlinear periodic problem driven by a nonhomogeneous differential operator plus an indefinite potential and a reaction having the competing effects of concave and convex terms. For the superlinear (concave) term we do not employ the usual in such cases Ambrosetti-Rabinowitz condition. Using variational methods together with truncation, perturbation and comparison techniques, we prove a bifurcation-type theorem describing the set of positive solutions as the parameter varies.
id RCAP_a0b214e6b11d6d203864e474fab4aa3c
oai_identifier_str oai:ria.ua.pt:10773/14983
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Positive solutions for parametric nonlinear periodic problems with competing nonlinearitiesNonhomogeneous differential operatorPositive solutionLocal minimizerNonlinear maximum principleMountain pass theoremBifurcationWe consider a nonlinear periodic problem driven by a nonhomogeneous differential operator plus an indefinite potential and a reaction having the competing effects of concave and convex terms. For the superlinear (concave) term we do not employ the usual in such cases Ambrosetti-Rabinowitz condition. Using variational methods together with truncation, perturbation and comparison techniques, we prove a bifurcation-type theorem describing the set of positive solutions as the parameter varies.Texas State University, Department of Mathematics2016-01-05T18:11:36Z2015-04-16T00:00:00Z2015-04-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/14983eng1072-6691Aizicovici, S.Papageorgiou, N. S.Staicu, V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:32Zoai:ria.ua.pt:10773/14983Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:26.311179Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Positive solutions for parametric nonlinear periodic problems with competing nonlinearities
title Positive solutions for parametric nonlinear periodic problems with competing nonlinearities
spellingShingle Positive solutions for parametric nonlinear periodic problems with competing nonlinearities
Aizicovici, S.
Nonhomogeneous differential operator
Positive solution
Local minimizer
Nonlinear maximum principle
Mountain pass theorem
Bifurcation
title_short Positive solutions for parametric nonlinear periodic problems with competing nonlinearities
title_full Positive solutions for parametric nonlinear periodic problems with competing nonlinearities
title_fullStr Positive solutions for parametric nonlinear periodic problems with competing nonlinearities
title_full_unstemmed Positive solutions for parametric nonlinear periodic problems with competing nonlinearities
title_sort Positive solutions for parametric nonlinear periodic problems with competing nonlinearities
author Aizicovici, S.
author_facet Aizicovici, S.
Papageorgiou, N. S.
Staicu, V.
author_role author
author2 Papageorgiou, N. S.
Staicu, V.
author2_role author
author
dc.contributor.author.fl_str_mv Aizicovici, S.
Papageorgiou, N. S.
Staicu, V.
dc.subject.por.fl_str_mv Nonhomogeneous differential operator
Positive solution
Local minimizer
Nonlinear maximum principle
Mountain pass theorem
Bifurcation
topic Nonhomogeneous differential operator
Positive solution
Local minimizer
Nonlinear maximum principle
Mountain pass theorem
Bifurcation
description We consider a nonlinear periodic problem driven by a nonhomogeneous differential operator plus an indefinite potential and a reaction having the competing effects of concave and convex terms. For the superlinear (concave) term we do not employ the usual in such cases Ambrosetti-Rabinowitz condition. Using variational methods together with truncation, perturbation and comparison techniques, we prove a bifurcation-type theorem describing the set of positive solutions as the parameter varies.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-16T00:00:00Z
2015-04-16
2016-01-05T18:11:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/14983
url http://hdl.handle.net/10773/14983
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1072-6691
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Texas State University, Department of Mathematics
publisher.none.fl_str_mv Texas State University, Department of Mathematics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137554546556928