Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models

Detalhes bibliográficos
Autor(a) principal: Dias Domingues , Tiago
Data de Publicação: 2024
Outros Autores: Mouriño, Helena, Sepúlveda, Nuno
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.57805/revstat.v22i1.455
Resumo: Gaussian mixture models, which assume a Normal distribution for each component, are popular in antibody (or serological) data analysis to help determining antibody-positive and antibody-negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. These flexible mixing distributions have the advantage of describing right and left asymmetry often observed in the distributions of known antibody-negative and antibody-positive individuals, respectively. We illustrate the application of these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
id RCAP_a18039bdf88203e5a519db7c39d6e4e0
oai_identifier_str oai:revstat:article/455
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Analysis of Antibody Data Using Skew-normal and Skew-T Mixture ModelsFinite mixture modelsSkew-Normalskew-tseropositivityGaussian mixture models, which assume a Normal distribution for each component, are popular in antibody (or serological) data analysis to help determining antibody-positive and antibody-negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. These flexible mixing distributions have the advantage of describing right and left asymmetry often observed in the distributions of known antibody-negative and antibody-positive individuals, respectively. We illustrate the application of these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.Statistics Portugal2024-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttps://doi.org/10.57805/revstat.v22i1.455https://doi.org/10.57805/revstat.v22i1.455REVSTAT-Statistical Journal; Vol. 22 No. 1 (2024): REVSTAT-Statistical Journal; 111–132REVSTAT; Vol. 22 N.º 1 (2024): REVSTAT-Statistical Journal; 111–1322183-03711645-6726reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/455https://revstat.ine.pt/index.php/REVSTAT/article/view/455/686https://revstat.ine.pt/index.php/REVSTAT/article/view/455/542Copyright (c) 2024 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessDias Domingues , TiagoMouriño, HelenaSepúlveda, Nuno2024-02-24T07:12:41Zoai:revstat:article/455Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:11:18.434267Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models
title Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models
spellingShingle Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models
Dias Domingues , Tiago
Finite mixture models
Skew-Normal
skew-t
seropositivity
title_short Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models
title_full Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models
title_fullStr Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models
title_full_unstemmed Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models
title_sort Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models
author Dias Domingues , Tiago
author_facet Dias Domingues , Tiago
Mouriño, Helena
Sepúlveda, Nuno
author_role author
author2 Mouriño, Helena
Sepúlveda, Nuno
author2_role author
author
dc.contributor.author.fl_str_mv Dias Domingues , Tiago
Mouriño, Helena
Sepúlveda, Nuno
dc.subject.por.fl_str_mv Finite mixture models
Skew-Normal
skew-t
seropositivity
topic Finite mixture models
Skew-Normal
skew-t
seropositivity
description Gaussian mixture models, which assume a Normal distribution for each component, are popular in antibody (or serological) data analysis to help determining antibody-positive and antibody-negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. These flexible mixing distributions have the advantage of describing right and left asymmetry often observed in the distributions of known antibody-negative and antibody-positive individuals, respectively. We illustrate the application of these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.57805/revstat.v22i1.455
https://doi.org/10.57805/revstat.v22i1.455
url https://doi.org/10.57805/revstat.v22i1.455
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revstat.ine.pt/index.php/REVSTAT/article/view/455
https://revstat.ine.pt/index.php/REVSTAT/article/view/455/686
https://revstat.ine.pt/index.php/REVSTAT/article/view/455/542
dc.rights.driver.fl_str_mv Copyright (c) 2024 REVSTAT-Statistical Journal
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2024 REVSTAT-Statistical Journal
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Statistics Portugal
publisher.none.fl_str_mv Statistics Portugal
dc.source.none.fl_str_mv REVSTAT-Statistical Journal; Vol. 22 No. 1 (2024): REVSTAT-Statistical Journal; 111–132
REVSTAT; Vol. 22 N.º 1 (2024): REVSTAT-Statistical Journal; 111–132
2183-0371
1645-6726
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137763349495808