Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.57805/revstat.v22i1.455 |
Resumo: | Gaussian mixture models, which assume a Normal distribution for each component, are popular in antibody (or serological) data analysis to help determining antibody-positive and antibody-negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. These flexible mixing distributions have the advantage of describing right and left asymmetry often observed in the distributions of known antibody-negative and antibody-positive individuals, respectively. We illustrate the application of these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. |
id |
RCAP_a18039bdf88203e5a519db7c39d6e4e0 |
---|---|
oai_identifier_str |
oai:revstat:article/455 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis of Antibody Data Using Skew-normal and Skew-T Mixture ModelsFinite mixture modelsSkew-Normalskew-tseropositivityGaussian mixture models, which assume a Normal distribution for each component, are popular in antibody (or serological) data analysis to help determining antibody-positive and antibody-negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. These flexible mixing distributions have the advantage of describing right and left asymmetry often observed in the distributions of known antibody-negative and antibody-positive individuals, respectively. We illustrate the application of these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.Statistics Portugal2024-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttps://doi.org/10.57805/revstat.v22i1.455https://doi.org/10.57805/revstat.v22i1.455REVSTAT-Statistical Journal; Vol. 22 No. 1 (2024): REVSTAT-Statistical Journal; 111–132REVSTAT; Vol. 22 N.º 1 (2024): REVSTAT-Statistical Journal; 111–1322183-03711645-6726reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/455https://revstat.ine.pt/index.php/REVSTAT/article/view/455/686https://revstat.ine.pt/index.php/REVSTAT/article/view/455/542Copyright (c) 2024 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessDias Domingues , TiagoMouriño, HelenaSepúlveda, Nuno2024-02-24T07:12:41Zoai:revstat:article/455Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:11:18.434267Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models |
title |
Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models |
spellingShingle |
Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models Dias Domingues , Tiago Finite mixture models Skew-Normal skew-t seropositivity |
title_short |
Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models |
title_full |
Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models |
title_fullStr |
Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models |
title_full_unstemmed |
Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models |
title_sort |
Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models |
author |
Dias Domingues , Tiago |
author_facet |
Dias Domingues , Tiago Mouriño, Helena Sepúlveda, Nuno |
author_role |
author |
author2 |
Mouriño, Helena Sepúlveda, Nuno |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Dias Domingues , Tiago Mouriño, Helena Sepúlveda, Nuno |
dc.subject.por.fl_str_mv |
Finite mixture models Skew-Normal skew-t seropositivity |
topic |
Finite mixture models Skew-Normal skew-t seropositivity |
description |
Gaussian mixture models, which assume a Normal distribution for each component, are popular in antibody (or serological) data analysis to help determining antibody-positive and antibody-negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. These flexible mixing distributions have the advantage of describing right and left asymmetry often observed in the distributions of known antibody-negative and antibody-positive individuals, respectively. We illustrate the application of these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.57805/revstat.v22i1.455 https://doi.org/10.57805/revstat.v22i1.455 |
url |
https://doi.org/10.57805/revstat.v22i1.455 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revstat.ine.pt/index.php/REVSTAT/article/view/455 https://revstat.ine.pt/index.php/REVSTAT/article/view/455/686 https://revstat.ine.pt/index.php/REVSTAT/article/view/455/542 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2024 REVSTAT-Statistical Journal info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2024 REVSTAT-Statistical Journal |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Statistics Portugal |
publisher.none.fl_str_mv |
Statistics Portugal |
dc.source.none.fl_str_mv |
REVSTAT-Statistical Journal; Vol. 22 No. 1 (2024): REVSTAT-Statistical Journal; 111–132 REVSTAT; Vol. 22 N.º 1 (2024): REVSTAT-Statistical Journal; 111–132 2183-0371 1645-6726 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137763349495808 |