A multiadaptive sampling technique for cost-effective network measurements

Detalhes bibliográficos
Autor(a) principal: Silva, João Marco C.
Data de Publicação: 2013
Outros Autores: Carvalho, Paulo, Lima, Solange
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/27126
Resumo: The deployment of efficient measurement solutions to assist network management tasks without interfering with normal network operation assumes a prominent role in today’s high-speed networks attending to the huge amounts of traffic involved. From a myriad of proposals for traffic measurement, sampling techniques are particularly relevant contributing effectively for this purpose as only a subset of the overall traffic volume is handled for processing, preserving ideally the correct estimation of network statistical behavior. In this context, this paper proposes MuST – a multiadaptive sampling technique based on linear prediction, aiming at reducing significantly the measurement overhead and still assuring that traffic samples reflect the statistical characteristics of the global network traffic under analysis. Conversely to current sampling techniques, MuST is a multi and self-adaptive technique as both the sample size and interval between samples are self-adjustable parameters according to the ongoing network activity and the accuracy of prediction achieved. The tests carried out demonstrate that the proposed sampling technique is able to achieve accurate network estimations with reduced overhead, using throughput as reference parameter. The evaluation results, obtained resorting to real traffic traces representing wired and wireless aggregated traffic scenarios and actual network services, prove that the simplicity, flexibility and self-adaptability of the proposed technique can be successfully explored to improve network measurements efficiency over distinct traffic conditions. For optimization purposes, this paper also includes a study of the impact of varying the order of prediction, i.e., of considering different degrees of past memory in the self-adaptive estimation mechanism. The significance of the obtained results is demonstrated through statistical benchmarking.
id RCAP_a18896d8c6e2907b683b285ab2729f2b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/27126
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A multiadaptive sampling technique for cost-effective network measurementsSampling techniquesTraffic measurementsLinear predictionAdaptive samplingScience & TechnologyThe deployment of efficient measurement solutions to assist network management tasks without interfering with normal network operation assumes a prominent role in today’s high-speed networks attending to the huge amounts of traffic involved. From a myriad of proposals for traffic measurement, sampling techniques are particularly relevant contributing effectively for this purpose as only a subset of the overall traffic volume is handled for processing, preserving ideally the correct estimation of network statistical behavior. In this context, this paper proposes MuST – a multiadaptive sampling technique based on linear prediction, aiming at reducing significantly the measurement overhead and still assuring that traffic samples reflect the statistical characteristics of the global network traffic under analysis. Conversely to current sampling techniques, MuST is a multi and self-adaptive technique as both the sample size and interval between samples are self-adjustable parameters according to the ongoing network activity and the accuracy of prediction achieved. The tests carried out demonstrate that the proposed sampling technique is able to achieve accurate network estimations with reduced overhead, using throughput as reference parameter. The evaluation results, obtained resorting to real traffic traces representing wired and wireless aggregated traffic scenarios and actual network services, prove that the simplicity, flexibility and self-adaptability of the proposed technique can be successfully explored to improve network measurements efficiency over distinct traffic conditions. For optimization purposes, this paper also includes a study of the impact of varying the order of prediction, i.e., of considering different degrees of past memory in the self-adaptive estimation mechanism. The significance of the obtained results is demonstrated through statistical benchmarking.Fundação para a Ciência e a Tecnologia (FCT)ElsevierUniversidade do MinhoSilva, João Marco C.Carvalho, PauloLima, Solange20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/27126eng1389-128610.1016/j.comnet.2013.07.023The original publication is available at http://www.sciencedirect.com/science/article/pii/S1389128613002491info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:26:50Zoai:repositorium.sdum.uminho.pt:1822/27126Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:21:20.041252Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A multiadaptive sampling technique for cost-effective network measurements
title A multiadaptive sampling technique for cost-effective network measurements
spellingShingle A multiadaptive sampling technique for cost-effective network measurements
Silva, João Marco C.
Sampling techniques
Traffic measurements
Linear prediction
Adaptive sampling
Science & Technology
title_short A multiadaptive sampling technique for cost-effective network measurements
title_full A multiadaptive sampling technique for cost-effective network measurements
title_fullStr A multiadaptive sampling technique for cost-effective network measurements
title_full_unstemmed A multiadaptive sampling technique for cost-effective network measurements
title_sort A multiadaptive sampling technique for cost-effective network measurements
author Silva, João Marco C.
author_facet Silva, João Marco C.
Carvalho, Paulo
Lima, Solange
author_role author
author2 Carvalho, Paulo
Lima, Solange
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Silva, João Marco C.
Carvalho, Paulo
Lima, Solange
dc.subject.por.fl_str_mv Sampling techniques
Traffic measurements
Linear prediction
Adaptive sampling
Science & Technology
topic Sampling techniques
Traffic measurements
Linear prediction
Adaptive sampling
Science & Technology
description The deployment of efficient measurement solutions to assist network management tasks without interfering with normal network operation assumes a prominent role in today’s high-speed networks attending to the huge amounts of traffic involved. From a myriad of proposals for traffic measurement, sampling techniques are particularly relevant contributing effectively for this purpose as only a subset of the overall traffic volume is handled for processing, preserving ideally the correct estimation of network statistical behavior. In this context, this paper proposes MuST – a multiadaptive sampling technique based on linear prediction, aiming at reducing significantly the measurement overhead and still assuring that traffic samples reflect the statistical characteristics of the global network traffic under analysis. Conversely to current sampling techniques, MuST is a multi and self-adaptive technique as both the sample size and interval between samples are self-adjustable parameters according to the ongoing network activity and the accuracy of prediction achieved. The tests carried out demonstrate that the proposed sampling technique is able to achieve accurate network estimations with reduced overhead, using throughput as reference parameter. The evaluation results, obtained resorting to real traffic traces representing wired and wireless aggregated traffic scenarios and actual network services, prove that the simplicity, flexibility and self-adaptability of the proposed technique can be successfully explored to improve network measurements efficiency over distinct traffic conditions. For optimization purposes, this paper also includes a study of the impact of varying the order of prediction, i.e., of considering different degrees of past memory in the self-adaptive estimation mechanism. The significance of the obtained results is demonstrated through statistical benchmarking.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/27126
url http://hdl.handle.net/1822/27126
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1389-1286
10.1016/j.comnet.2013.07.023
The original publication is available at http://www.sciencedirect.com/science/article/pii/S1389128613002491
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132679705198592