Comparative life cycle assessment of high-yield synthesis routes for carbon dots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/147816 |
Resumo: | Carbon dots (CDs) are carbon-based nanomaterials with advantageous luminescent properties, making them promising alternatives to other molecular and nanosized fluorophores. However, the development of CDs is impaired by the low synthesis yield of standard fabrication strategies, making high-yield strategies essential. To help future studies to focus on cleaner production strategies, we have employed a Life Cycle Assessment (LCA) to compare and understand the environmental impacts of available routes for the high-yield synthesis of carbon dots. These routes were: (1) production of hydrochar, via hydrothermal treatment of carbon precursors, and its alkaline-peroxide treatment into high-yield carbon dots; (2) thermal treatment of carbon precursors mixed in a eutectic mixture of salts. Results show that the first synthesis route is associated with the lowest environmental impacts. This is attributed to the absence of the mixture of salts in the first synthesis route, which offsets its higher electricity consumption. Sensitivity analysis showed that the most critical parameter in the different synthetic strategies is the identity of the carbon precursor, with electricity being also relevant for the first synthesis route. Nevertheless, the use of some carbon precursors (as citric acid) with higher associated environmental impacts may be justified by their beneficial role in increasing the luminescent performance of carbon dots. Thus, the first synthesis route is indicated to be the most environmental benign and should be used as a basis in future studies aimed to the cleaner and high-yield production of carbon dots. |
id |
RCAP_a18b4bd4c502b7d5d42e20253fc4affa |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/147816 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Comparative life cycle assessment of high-yield synthesis routes for carbon dotsCarbon dots (CDs) are carbon-based nanomaterials with advantageous luminescent properties, making them promising alternatives to other molecular and nanosized fluorophores. However, the development of CDs is impaired by the low synthesis yield of standard fabrication strategies, making high-yield strategies essential. To help future studies to focus on cleaner production strategies, we have employed a Life Cycle Assessment (LCA) to compare and understand the environmental impacts of available routes for the high-yield synthesis of carbon dots. These routes were: (1) production of hydrochar, via hydrothermal treatment of carbon precursors, and its alkaline-peroxide treatment into high-yield carbon dots; (2) thermal treatment of carbon precursors mixed in a eutectic mixture of salts. Results show that the first synthesis route is associated with the lowest environmental impacts. This is attributed to the absence of the mixture of salts in the first synthesis route, which offsets its higher electricity consumption. Sensitivity analysis showed that the most critical parameter in the different synthetic strategies is the identity of the carbon precursor, with electricity being also relevant for the first synthesis route. Nevertheless, the use of some carbon precursors (as citric acid) with higher associated environmental impacts may be justified by their beneficial role in increasing the luminescent performance of carbon dots. Thus, the first synthesis route is indicated to be the most environmental benign and should be used as a basis in future studies aimed to the cleaner and high-yield production of carbon dots.2021-06-112021-06-11T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/147816eng2452-074810.1016/j.impact.2021.100332Fernandes, SJoaquim C G E Esteves da Silvada Silva, LPinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:19:44Zoai:repositorio-aberto.up.pt:10216/147816Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:59:02.116089Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Comparative life cycle assessment of high-yield synthesis routes for carbon dots |
title |
Comparative life cycle assessment of high-yield synthesis routes for carbon dots |
spellingShingle |
Comparative life cycle assessment of high-yield synthesis routes for carbon dots Fernandes, S |
title_short |
Comparative life cycle assessment of high-yield synthesis routes for carbon dots |
title_full |
Comparative life cycle assessment of high-yield synthesis routes for carbon dots |
title_fullStr |
Comparative life cycle assessment of high-yield synthesis routes for carbon dots |
title_full_unstemmed |
Comparative life cycle assessment of high-yield synthesis routes for carbon dots |
title_sort |
Comparative life cycle assessment of high-yield synthesis routes for carbon dots |
author |
Fernandes, S |
author_facet |
Fernandes, S Joaquim C G E Esteves da Silva da Silva, LP |
author_role |
author |
author2 |
Joaquim C G E Esteves da Silva da Silva, LP |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fernandes, S Joaquim C G E Esteves da Silva da Silva, LP |
description |
Carbon dots (CDs) are carbon-based nanomaterials with advantageous luminescent properties, making them promising alternatives to other molecular and nanosized fluorophores. However, the development of CDs is impaired by the low synthesis yield of standard fabrication strategies, making high-yield strategies essential. To help future studies to focus on cleaner production strategies, we have employed a Life Cycle Assessment (LCA) to compare and understand the environmental impacts of available routes for the high-yield synthesis of carbon dots. These routes were: (1) production of hydrochar, via hydrothermal treatment of carbon precursors, and its alkaline-peroxide treatment into high-yield carbon dots; (2) thermal treatment of carbon precursors mixed in a eutectic mixture of salts. Results show that the first synthesis route is associated with the lowest environmental impacts. This is attributed to the absence of the mixture of salts in the first synthesis route, which offsets its higher electricity consumption. Sensitivity analysis showed that the most critical parameter in the different synthetic strategies is the identity of the carbon precursor, with electricity being also relevant for the first synthesis route. Nevertheless, the use of some carbon precursors (as citric acid) with higher associated environmental impacts may be justified by their beneficial role in increasing the luminescent performance of carbon dots. Thus, the first synthesis route is indicated to be the most environmental benign and should be used as a basis in future studies aimed to the cleaner and high-yield production of carbon dots. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-11 2021-06-11T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/147816 |
url |
https://hdl.handle.net/10216/147816 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2452-0748 10.1016/j.impact.2021.100332 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135913458008064 |