Development of a new mRNA vaccine platform for tuberculosis

Detalhes bibliográficos
Autor(a) principal: Matarazzo, Laura
Data de Publicação: 2023
Outros Autores: Taina‑González, Laura, Pinheiro, Ricardo, Pires, David, de la Fuente, María, Bettencourt, Paulo J. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/42517
Resumo: Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is the frst cause of death by an infectious disease worldwide, killed 1.6 million people in 2021. Bacillus Calmette-Guerin (BCG) is the only approved vaccine for TB to date. However, while BCG is efective in preventing severe forms in children, its efcacy in adults is inconsistent and it does not prevent transmission, highlighting the need for new vaccine development [1]. The recent success of COVID-19 vaccines raised the interest for mRNA-based vaccines, as they are efective, safe and easy to produce. This project aims to develop a new mRNA vaccine platform for TB, based on mRNA coding for antigenic peptides from BCG and M.tb identifed by immunopeptidomics [2], and formulated with a patented technology of lipid nanoemulsions (NE) (WO2019138139A1), adapted for efcient intracellular delivery of mRNA [3]. Materials and methods We tested diferent prototypes of NE-mRNA formulations, coding for EGFP, in vitro. Human alveolar basal epithelial cells (A549), human monocytic cells (THP-1), and primary human monocyte-derived macrophages, were transfected with NE-mRNA formulations. Transfection efciency was assessed by measuring the percentage of transfected cells, and the intensity of GFP fuorescence. The cytotoxicity of the formulations was evaluated using AlamarBlue, and by 7-AAD viability staining. Results In vitro preliminary data using EGFP-mRNA-NE formulations indicate that NE formulations can efciently deliver mRNA and induce expression of the encoded protein in diferent cell types, with low cytotoxicity. Conclusions The NE technology presented here is safe, stable, and can efciently deliver mRNA to various cell types. Selected NE formulations will be used as a carrier for a new vaccine candidate against TB, based on mRNA encoding relevant antigenic peptides. These will be tested in mice for safety, immunogenicity, efcacy and dose optimization in order to generate an efective and sustained humoral and cellular immune response against TB. The mRNA vaccines are rapid and relatively simple to produce. The vaccine platform described here could be adapted to develop vaccines against other infectious diseases, particularly to quickly respond to emerging pathogens.
id RCAP_a19aeab9020fad6f47ffb33475f5c5ed
oai_identifier_str oai:repositorio.ucp.pt:10400.14/42517
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of a new mRNA vaccine platform for tuberculosisBackground Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is the frst cause of death by an infectious disease worldwide, killed 1.6 million people in 2021. Bacillus Calmette-Guerin (BCG) is the only approved vaccine for TB to date. However, while BCG is efective in preventing severe forms in children, its efcacy in adults is inconsistent and it does not prevent transmission, highlighting the need for new vaccine development [1]. The recent success of COVID-19 vaccines raised the interest for mRNA-based vaccines, as they are efective, safe and easy to produce. This project aims to develop a new mRNA vaccine platform for TB, based on mRNA coding for antigenic peptides from BCG and M.tb identifed by immunopeptidomics [2], and formulated with a patented technology of lipid nanoemulsions (NE) (WO2019138139A1), adapted for efcient intracellular delivery of mRNA [3]. Materials and methods We tested diferent prototypes of NE-mRNA formulations, coding for EGFP, in vitro. Human alveolar basal epithelial cells (A549), human monocytic cells (THP-1), and primary human monocyte-derived macrophages, were transfected with NE-mRNA formulations. Transfection efciency was assessed by measuring the percentage of transfected cells, and the intensity of GFP fuorescence. The cytotoxicity of the formulations was evaluated using AlamarBlue, and by 7-AAD viability staining. Results In vitro preliminary data using EGFP-mRNA-NE formulations indicate that NE formulations can efciently deliver mRNA and induce expression of the encoded protein in diferent cell types, with low cytotoxicity. Conclusions The NE technology presented here is safe, stable, and can efciently deliver mRNA to various cell types. Selected NE formulations will be used as a carrier for a new vaccine candidate against TB, based on mRNA encoding relevant antigenic peptides. These will be tested in mice for safety, immunogenicity, efcacy and dose optimization in order to generate an efective and sustained humoral and cellular immune response against TB. The mRNA vaccines are rapid and relatively simple to produce. The vaccine platform described here could be adapted to develop vaccines against other infectious diseases, particularly to quickly respond to emerging pathogens.Veritati - Repositório Institucional da Universidade Católica PortuguesaMatarazzo, LauraTaina‑González, LauraPinheiro, RicardoPires, Davidde la Fuente, MaríaBettencourt, Paulo J. G.2023-09-20T14:53:02Z2023-08-212023-08-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/42517eng1753-6561info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-26T01:44:12Zoai:repositorio.ucp.pt:10400.14/42517Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:30:58.010382Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of a new mRNA vaccine platform for tuberculosis
title Development of a new mRNA vaccine platform for tuberculosis
spellingShingle Development of a new mRNA vaccine platform for tuberculosis
Matarazzo, Laura
title_short Development of a new mRNA vaccine platform for tuberculosis
title_full Development of a new mRNA vaccine platform for tuberculosis
title_fullStr Development of a new mRNA vaccine platform for tuberculosis
title_full_unstemmed Development of a new mRNA vaccine platform for tuberculosis
title_sort Development of a new mRNA vaccine platform for tuberculosis
author Matarazzo, Laura
author_facet Matarazzo, Laura
Taina‑González, Laura
Pinheiro, Ricardo
Pires, David
de la Fuente, María
Bettencourt, Paulo J. G.
author_role author
author2 Taina‑González, Laura
Pinheiro, Ricardo
Pires, David
de la Fuente, María
Bettencourt, Paulo J. G.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Matarazzo, Laura
Taina‑González, Laura
Pinheiro, Ricardo
Pires, David
de la Fuente, María
Bettencourt, Paulo J. G.
description Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is the frst cause of death by an infectious disease worldwide, killed 1.6 million people in 2021. Bacillus Calmette-Guerin (BCG) is the only approved vaccine for TB to date. However, while BCG is efective in preventing severe forms in children, its efcacy in adults is inconsistent and it does not prevent transmission, highlighting the need for new vaccine development [1]. The recent success of COVID-19 vaccines raised the interest for mRNA-based vaccines, as they are efective, safe and easy to produce. This project aims to develop a new mRNA vaccine platform for TB, based on mRNA coding for antigenic peptides from BCG and M.tb identifed by immunopeptidomics [2], and formulated with a patented technology of lipid nanoemulsions (NE) (WO2019138139A1), adapted for efcient intracellular delivery of mRNA [3]. Materials and methods We tested diferent prototypes of NE-mRNA formulations, coding for EGFP, in vitro. Human alveolar basal epithelial cells (A549), human monocytic cells (THP-1), and primary human monocyte-derived macrophages, were transfected with NE-mRNA formulations. Transfection efciency was assessed by measuring the percentage of transfected cells, and the intensity of GFP fuorescence. The cytotoxicity of the formulations was evaluated using AlamarBlue, and by 7-AAD viability staining. Results In vitro preliminary data using EGFP-mRNA-NE formulations indicate that NE formulations can efciently deliver mRNA and induce expression of the encoded protein in diferent cell types, with low cytotoxicity. Conclusions The NE technology presented here is safe, stable, and can efciently deliver mRNA to various cell types. Selected NE formulations will be used as a carrier for a new vaccine candidate against TB, based on mRNA encoding relevant antigenic peptides. These will be tested in mice for safety, immunogenicity, efcacy and dose optimization in order to generate an efective and sustained humoral and cellular immune response against TB. The mRNA vaccines are rapid and relatively simple to produce. The vaccine platform described here could be adapted to develop vaccines against other infectious diseases, particularly to quickly respond to emerging pathogens.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-20T14:53:02Z
2023-08-21
2023-08-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/42517
url http://hdl.handle.net/10400.14/42517
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1753-6561
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133578427105280