Application of image analysis to the prediction of EBC barley kernel weight distribution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/9613 |
Resumo: | It is known that the barley kernel size is an important factor regarding the uniformity of the malting and brewery processes, barley valuation, approval andmarket value. In order to facilitate the barley purchasing process, a fast field technique for kernel size evaluation, such as the image analysis technique proposed in this work, would be greatly appreciated as a fast and simple procedure for barley selection. In this study a close correlation between the image analysis and the standard EBC was obtained with a correlation factor of 0.999 and a regression coefficient of 0.991 between the two methodologies. The proposed IA methodologywas found to accurately predict the Scarlett and Prestige barley varietiesweight distribution especially when considering the crucial ‘business transactions selection’ classes. |
id |
RCAP_a2a63fa7cda7a85c735822d19bece423 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/9613 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Application of image analysis to the prediction of EBC barley kernel weight distributionBarley analysisKernel sizeImage analysisPartial least squaresScience & TechnologyIt is known that the barley kernel size is an important factor regarding the uniformity of the malting and brewery processes, barley valuation, approval andmarket value. In order to facilitate the barley purchasing process, a fast field technique for kernel size evaluation, such as the image analysis technique proposed in this work, would be greatly appreciated as a fast and simple procedure for barley selection. In this study a close correlation between the image analysis and the standard EBC was obtained with a correlation factor of 0.999 and a regression coefficient of 0.991 between the two methodologies. The proposed IA methodologywas found to accurately predict the Scarlett and Prestige barley varietiesweight distribution especially when considering the crucial ‘business transactions selection’ classes.Unicer, S.A.Elsevier B.V.Universidade do MinhoAmaral, A. L.Rocha, OrlandoGonçalves, CristinaFerreira, António AugustoFerreira, Eugénio C.2009-112009-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/9613engAmaral, A. L., Rocha, O., Gonçalves, C., Ferreira, A. A., & Ferreira, E. C. (2009, November). Application of image analysis to the prediction of EBC barley kernel weight distribution. Industrial Crops and Products. Elsevier BV. http://doi.org/10.1016/j.indcrop.2009.07.0030926-669010.1016/j.indcrop.2009.07.003https://www.sciencedirect.com/science/article/pii/S0926669009000971info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:23:45Zoai:repositorium.sdum.uminho.pt:1822/9613Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:17:34.009759Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Application of image analysis to the prediction of EBC barley kernel weight distribution |
title |
Application of image analysis to the prediction of EBC barley kernel weight distribution |
spellingShingle |
Application of image analysis to the prediction of EBC barley kernel weight distribution Amaral, A. L. Barley analysis Kernel size Image analysis Partial least squares Science & Technology |
title_short |
Application of image analysis to the prediction of EBC barley kernel weight distribution |
title_full |
Application of image analysis to the prediction of EBC barley kernel weight distribution |
title_fullStr |
Application of image analysis to the prediction of EBC barley kernel weight distribution |
title_full_unstemmed |
Application of image analysis to the prediction of EBC barley kernel weight distribution |
title_sort |
Application of image analysis to the prediction of EBC barley kernel weight distribution |
author |
Amaral, A. L. |
author_facet |
Amaral, A. L. Rocha, Orlando Gonçalves, Cristina Ferreira, António Augusto Ferreira, Eugénio C. |
author_role |
author |
author2 |
Rocha, Orlando Gonçalves, Cristina Ferreira, António Augusto Ferreira, Eugénio C. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Amaral, A. L. Rocha, Orlando Gonçalves, Cristina Ferreira, António Augusto Ferreira, Eugénio C. |
dc.subject.por.fl_str_mv |
Barley analysis Kernel size Image analysis Partial least squares Science & Technology |
topic |
Barley analysis Kernel size Image analysis Partial least squares Science & Technology |
description |
It is known that the barley kernel size is an important factor regarding the uniformity of the malting and brewery processes, barley valuation, approval andmarket value. In order to facilitate the barley purchasing process, a fast field technique for kernel size evaluation, such as the image analysis technique proposed in this work, would be greatly appreciated as a fast and simple procedure for barley selection. In this study a close correlation between the image analysis and the standard EBC was obtained with a correlation factor of 0.999 and a regression coefficient of 0.991 between the two methodologies. The proposed IA methodologywas found to accurately predict the Scarlett and Prestige barley varietiesweight distribution especially when considering the crucial ‘business transactions selection’ classes. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-11 2009-11-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/9613 |
url |
https://hdl.handle.net/1822/9613 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Amaral, A. L., Rocha, O., Gonçalves, C., Ferreira, A. A., & Ferreira, E. C. (2009, November). Application of image analysis to the prediction of EBC barley kernel weight distribution. Industrial Crops and Products. Elsevier BV. http://doi.org/10.1016/j.indcrop.2009.07.003 0926-6690 10.1016/j.indcrop.2009.07.003 https://www.sciencedirect.com/science/article/pii/S0926669009000971 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132628603895808 |