Evolutionary Computation on Road Safety
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1007/978-3-319-92639-1_54 |
Texto Completo: | http://hdl.handle.net/10174/23232 https://doi.org/10.1007/978-3-319-92639-1_54 |
Resumo: | This study examines the psychological research that focuses on road safety in Smart Cities as proposed by the Vulnerable Road Users (VRUs) sphere. It takes into account qualities such as VRUs’ personal information, their habits, environmental measurements and things data. With the goal of seeing VRUs as active and proactive actors with differentiated feelings and behaviours, we are committed to integrating the social factors that characterize each VRU into our social machinery. As a result, we will focus on the development of a VRU Social Machine to assess VRUs’ behaviour in order to improve road safety. The formal background will be to use Logic Programming to define its architecture based on a Deep Learning approach to Knowledge Representation and Reasoning, complemented with an Evolutionary approach to Computing. |
id |
RCAP_a2b5b85bbed54ca018f79004946b63b0 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/23232 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Evolutionary Computation on Road SafetyArtificial IntelligenceSmart CitiesVulnerable Road UsersInternet of PeopleKnowledge Representation and ReasoningEvolutionary ComputationThis study examines the psychological research that focuses on road safety in Smart Cities as proposed by the Vulnerable Road Users (VRUs) sphere. It takes into account qualities such as VRUs’ personal information, their habits, environmental measurements and things data. With the goal of seeing VRUs as active and proactive actors with differentiated feelings and behaviours, we are committed to integrating the social factors that characterize each VRU into our social machinery. As a result, we will focus on the development of a VRU Social Machine to assess VRUs’ behaviour in order to improve road safety. The formal background will be to use Logic Programming to define its architecture based on a Deep Learning approach to Knowledge Representation and Reasoning, complemented with an Evolutionary approach to Computing.Springer2018-06-12T09:47:54Z2018-06-122018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/23232http://hdl.handle.net/10174/23232https://doi.org/10.1007/978-3-319-92639-1_54engFernandes, B., Vicente, H., Ribeiro, J., Analide, C. & Neves, J. Evolutionary Computation on Road Safety. Lecture Notes in Computer Science, 10870, 647–657, 2018.0302-9743 (paper)1611-3349 (electronic)http://link.springer.com/chapter/ 10.1007/978-3-319-92639-1_54CQEbruno.fmf.8@gmail.comhvicente@uevora.ptjribeiro@estg.ipvc.ptanalide@di.uminho.ptjneves@di.uminho.ptFernandes, BrunoVicente, HenriqueRibeiro, JorgeAnalide, CesarNeves, Joséinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:15:13Zoai:dspace.uevora.pt:10174/23232Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:14:05.824854Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Evolutionary Computation on Road Safety |
title |
Evolutionary Computation on Road Safety |
spellingShingle |
Evolutionary Computation on Road Safety Evolutionary Computation on Road Safety Fernandes, Bruno Artificial Intelligence Smart Cities Vulnerable Road Users Internet of People Knowledge Representation and Reasoning Evolutionary Computation Fernandes, Bruno Artificial Intelligence Smart Cities Vulnerable Road Users Internet of People Knowledge Representation and Reasoning Evolutionary Computation |
title_short |
Evolutionary Computation on Road Safety |
title_full |
Evolutionary Computation on Road Safety |
title_fullStr |
Evolutionary Computation on Road Safety Evolutionary Computation on Road Safety |
title_full_unstemmed |
Evolutionary Computation on Road Safety Evolutionary Computation on Road Safety |
title_sort |
Evolutionary Computation on Road Safety |
author |
Fernandes, Bruno |
author_facet |
Fernandes, Bruno Fernandes, Bruno Vicente, Henrique Ribeiro, Jorge Analide, Cesar Neves, José Vicente, Henrique Ribeiro, Jorge Analide, Cesar Neves, José |
author_role |
author |
author2 |
Vicente, Henrique Ribeiro, Jorge Analide, Cesar Neves, José |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Fernandes, Bruno Vicente, Henrique Ribeiro, Jorge Analide, Cesar Neves, José |
dc.subject.por.fl_str_mv |
Artificial Intelligence Smart Cities Vulnerable Road Users Internet of People Knowledge Representation and Reasoning Evolutionary Computation |
topic |
Artificial Intelligence Smart Cities Vulnerable Road Users Internet of People Knowledge Representation and Reasoning Evolutionary Computation |
description |
This study examines the psychological research that focuses on road safety in Smart Cities as proposed by the Vulnerable Road Users (VRUs) sphere. It takes into account qualities such as VRUs’ personal information, their habits, environmental measurements and things data. With the goal of seeing VRUs as active and proactive actors with differentiated feelings and behaviours, we are committed to integrating the social factors that characterize each VRU into our social machinery. As a result, we will focus on the development of a VRU Social Machine to assess VRUs’ behaviour in order to improve road safety. The formal background will be to use Logic Programming to define its architecture based on a Deep Learning approach to Knowledge Representation and Reasoning, complemented with an Evolutionary approach to Computing. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-12T09:47:54Z 2018-06-12 2018-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/23232 http://hdl.handle.net/10174/23232 https://doi.org/10.1007/978-3-319-92639-1_54 |
url |
http://hdl.handle.net/10174/23232 https://doi.org/10.1007/978-3-319-92639-1_54 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Fernandes, B., Vicente, H., Ribeiro, J., Analide, C. & Neves, J. Evolutionary Computation on Road Safety. Lecture Notes in Computer Science, 10870, 647–657, 2018. 0302-9743 (paper) 1611-3349 (electronic) http://link.springer.com/chapter/ 10.1007/978-3-319-92639-1_54 CQE bruno.fmf.8@gmail.com hvicente@uevora.pt jribeiro@estg.ipvc.pt analide@di.uminho.pt jneves@di.uminho.pt |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1822241667151822848 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-319-92639-1_54 |