Otimização estocástica em Finanças
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/88148 |
Resumo: | Dissertação de Mestrado em Métodos Quantitativos em Finanças apresentada à Faculdade de Ciências e Tecnologia |
id |
RCAP_a3119bb02a19317a29332a471444bea7 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/88148 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Otimização estocástica em FinançasStochastic Optimization in FinanceOtimização EstocásticaDecomposição de BendersGestão de Bens e ResponsabilidadesStochastic OptimizationBenders DecompositionAsset Liability ManagementDissertação de Mestrado em Métodos Quantitativos em Finanças apresentada à Faculdade de Ciências e TecnologiaA otimização é uma área da matemática aplicada em que se pretende encontrar a solução ótima de uma determinada função, minimizando ou maximizando, dado um conjunto de restrições e variáveis. Geralmente, a construção do modelo do problema de otimização é feita admitindo que os dados são conhecidos com precisão. No entanto, em muitos problemas da vida real surgem incertezas fazendo com que esses modelos não sejam os mais adequados. Nesse contexto, surge a otimização estocástica que é uma abordagem muito utilizada sobretudo na área de Finanças quando os parâmetros incertos do problema são variáveis aleatórias com uma distribuição de probabilidade conhecida. Nesta dissertação, pretende-se apresentar uma introdução e aprofundar os conceitos básicos de otimização estocástica e as suas formulações. Deste modo, será apresentado as vantagens em utilizar a otimização estocástica ao invés do modelo determinístico. A otimização estocástica é baseada em cenários que pretendem representar todas as possíveis concretizações dos parâmetros ou pelo menos indicar uma boa estimativa no caso da distribuição dos parâmetros ser continua. Em problemas reais, o número de cenário costuma ser bastante elevado tornando os problemas computacionalmente difícies de resolver. Estes problemas de otimização de larga escala, podem ser resolvidos mais eficientemente através do método da Decomposição de Benders, o qual é estudado neste trabalho. Por fim, como a otimização está muito presente na área das Finanças, uma aplicação da otimização estocástica a um problema financeiro é apresentado desde a modelação à resolução.Optimization is an area of applied mathematics in which one intends to find the optimal solution of a given function, minimizing or maximizing, a given set of constraints and variables. Usually, the optimization problem model is constructed assuming that the data is known with precision. However, in many real life problems, uncertainties arises making these models not the most appropriate. In this context, the stochastic optimization emerged, which is a widely used approach especially in the area of Finance when the uncertain parameters of the problem are random variables with a known probability distribuction. This dissertation intends to present an introduction and develop the basic concepts of stochastic optimization problems and its formulations. Thus the advantages of using stochastic optimization instead of the deterministic model will be presented. Stochastic optimization is based on scenarios that aim to represent all possible parameter realizations or at least to indicate a good estimation if the distribution of parameters is continious. In real problems, the number of scenarios is usually quite high, making the stochastic optimization problems computationally difficult to solve. These large scale optimization problems can be solved more efficiently by the Benders Decomposition method which is studied in this paper. Finally, as a optimization is very present in the Finance field, an application of stochastic optimization to a financial problem is presented from modeling to resolution.2019-09-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/10316/88148http://hdl.handle.net/10316/88148TID:202309185porBrilhante, Luísa Rodriguesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-11T10:57:20Zoai:estudogeral.uc.pt:10316/88148Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:08:55.462283Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Otimização estocástica em Finanças Stochastic Optimization in Finance |
title |
Otimização estocástica em Finanças |
spellingShingle |
Otimização estocástica em Finanças Brilhante, Luísa Rodrigues Otimização Estocástica Decomposição de Benders Gestão de Bens e Responsabilidades Stochastic Optimization Benders Decomposition Asset Liability Management |
title_short |
Otimização estocástica em Finanças |
title_full |
Otimização estocástica em Finanças |
title_fullStr |
Otimização estocástica em Finanças |
title_full_unstemmed |
Otimização estocástica em Finanças |
title_sort |
Otimização estocástica em Finanças |
author |
Brilhante, Luísa Rodrigues |
author_facet |
Brilhante, Luísa Rodrigues |
author_role |
author |
dc.contributor.author.fl_str_mv |
Brilhante, Luísa Rodrigues |
dc.subject.por.fl_str_mv |
Otimização Estocástica Decomposição de Benders Gestão de Bens e Responsabilidades Stochastic Optimization Benders Decomposition Asset Liability Management |
topic |
Otimização Estocástica Decomposição de Benders Gestão de Bens e Responsabilidades Stochastic Optimization Benders Decomposition Asset Liability Management |
description |
Dissertação de Mestrado em Métodos Quantitativos em Finanças apresentada à Faculdade de Ciências e Tecnologia |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/88148 http://hdl.handle.net/10316/88148 TID:202309185 |
url |
http://hdl.handle.net/10316/88148 |
identifier_str_mv |
TID:202309185 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133982496915456 |