Generation of realistic scenarios for multi-agent simulation of electricity markets

Detalhes bibliográficos
Autor(a) principal: Silva, Francisco
Data de Publicação: 2016
Outros Autores: Teixeira, Brígida, Pinto, Tiago, Santos, Gabriel, Vale, Zita, Praça, Isabel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/9371
Resumo: Most market operators provide daily data on several market processes, including the results of all market transactions. The use of such data by electricity market simulators is essential for simulations quality, enabling the modelling of market behaviour in a much more realistic and efficient way. RealScen (Realistic Scenarios Generator) is a tool that creates realistic scenarios according to the purpose of the simulation: representing reality as it is, or on a smaller scale but still as representative as possible. This paper presents a novel methodology that enables RealScen to collect real electricity markets information and using it to represent market participants, as well as modelling their characteristics and behaviours. This is done using data analysis combined with artificial intelligence. This paper analyses the way players' characteristics are modelled, particularly in their representation in a smaller scale, simplifying the simulation while maintaining the quality of results. A study is also conducted, comparing real electricity market values with the market results achieved using the generated scenarios. The conducted study shows that the scenarios can fully represent the reality, or approximate it through a reduced number of representative software agents. As a result, the proposed methodology enables RealScen to represent markets behaviour, allowing the study and understanding of the interactions between market entities, and the study of new markets by assuring the realism of simulations.
id RCAP_a37699d7fc7e825cde8c2943585edba2
oai_identifier_str oai:recipp.ipp.pt:10400.22/9371
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Generation of realistic scenarios for multi-agent simulation of electricity marketsData-MiningElectricity marketsKnowledge discoveryMachine learningMulti-agent simulationScenarios generationMost market operators provide daily data on several market processes, including the results of all market transactions. The use of such data by electricity market simulators is essential for simulations quality, enabling the modelling of market behaviour in a much more realistic and efficient way. RealScen (Realistic Scenarios Generator) is a tool that creates realistic scenarios according to the purpose of the simulation: representing reality as it is, or on a smaller scale but still as representative as possible. This paper presents a novel methodology that enables RealScen to collect real electricity markets information and using it to represent market participants, as well as modelling their characteristics and behaviours. This is done using data analysis combined with artificial intelligence. This paper analyses the way players' characteristics are modelled, particularly in their representation in a smaller scale, simplifying the simulation while maintaining the quality of results. A study is also conducted, comparing real electricity market values with the market results achieved using the generated scenarios. The conducted study shows that the scenarios can fully represent the reality, or approximate it through a reduced number of representative software agents. As a result, the proposed methodology enables RealScen to represent markets behaviour, allowing the study and understanding of the interactions between market entities, and the study of new markets by assuring the realism of simulations.ElsevierRepositório Científico do Instituto Politécnico do PortoSilva, FranciscoTeixeira, BrígidaPinto, TiagoSantos, GabrielVale, ZitaPraça, Isabel20162117-01-01T00:00:00Z2016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/9371eng10.1016/j.energy.2016.09.096info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:50:44Zoai:recipp.ipp.pt:10400.22/9371Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:29:59.068652Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Generation of realistic scenarios for multi-agent simulation of electricity markets
title Generation of realistic scenarios for multi-agent simulation of electricity markets
spellingShingle Generation of realistic scenarios for multi-agent simulation of electricity markets
Silva, Francisco
Data-Mining
Electricity markets
Knowledge discovery
Machine learning
Multi-agent simulation
Scenarios generation
title_short Generation of realistic scenarios for multi-agent simulation of electricity markets
title_full Generation of realistic scenarios for multi-agent simulation of electricity markets
title_fullStr Generation of realistic scenarios for multi-agent simulation of electricity markets
title_full_unstemmed Generation of realistic scenarios for multi-agent simulation of electricity markets
title_sort Generation of realistic scenarios for multi-agent simulation of electricity markets
author Silva, Francisco
author_facet Silva, Francisco
Teixeira, Brígida
Pinto, Tiago
Santos, Gabriel
Vale, Zita
Praça, Isabel
author_role author
author2 Teixeira, Brígida
Pinto, Tiago
Santos, Gabriel
Vale, Zita
Praça, Isabel
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Silva, Francisco
Teixeira, Brígida
Pinto, Tiago
Santos, Gabriel
Vale, Zita
Praça, Isabel
dc.subject.por.fl_str_mv Data-Mining
Electricity markets
Knowledge discovery
Machine learning
Multi-agent simulation
Scenarios generation
topic Data-Mining
Electricity markets
Knowledge discovery
Machine learning
Multi-agent simulation
Scenarios generation
description Most market operators provide daily data on several market processes, including the results of all market transactions. The use of such data by electricity market simulators is essential for simulations quality, enabling the modelling of market behaviour in a much more realistic and efficient way. RealScen (Realistic Scenarios Generator) is a tool that creates realistic scenarios according to the purpose of the simulation: representing reality as it is, or on a smaller scale but still as representative as possible. This paper presents a novel methodology that enables RealScen to collect real electricity markets information and using it to represent market participants, as well as modelling their characteristics and behaviours. This is done using data analysis combined with artificial intelligence. This paper analyses the way players' characteristics are modelled, particularly in their representation in a smaller scale, simplifying the simulation while maintaining the quality of results. A study is also conducted, comparing real electricity market values with the market results achieved using the generated scenarios. The conducted study shows that the scenarios can fully represent the reality, or approximate it through a reduced number of representative software agents. As a result, the proposed methodology enables RealScen to represent markets behaviour, allowing the study and understanding of the interactions between market entities, and the study of new markets by assuring the realism of simulations.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
2117-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/9371
url http://hdl.handle.net/10400.22/9371
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.energy.2016.09.096
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131395822452736