Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/83882 |
Resumo: | We investigate the converse of the known fact that if the Gersgorin discs of a real n-by-n matrix may be separated by positive diagonal similarity then the eigenvalues are real. In the 2-by-2 case, with appropriate signs for the off-diagonal entries, we find that the converse is correct, which raises several questions. First, in the 3-by-3 case, the converse is not generally correct, but, empirically it is frequently true. Then, in the n-by-n case, n >=3, we find that if all the 2-by-2 principal submatrices have inseparable discs (\strongly inseparable discs"), the full matrix must have a nontrivial pair of conjugate complex eigenvalues (i.e., cannot have all real eigenvalues). This hypothesis cannot generally be weakened. |
id |
RCAP_a3d296ebb372f25ef2fb5fbfc01950fb |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/83882 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matricesGershgorin discsdiagonal similaritysign skew-symmetric matrixCiências Naturais::MatemáticasScience & TechnologyWe investigate the converse of the known fact that if the Gersgorin discs of a real n-by-n matrix may be separated by positive diagonal similarity then the eigenvalues are real. In the 2-by-2 case, with appropriate signs for the off-diagonal entries, we find that the converse is correct, which raises several questions. First, in the 3-by-3 case, the converse is not generally correct, but, empirically it is frequently true. Then, in the n-by-n case, n >=3, we find that if all the 2-by-2 principal submatrices have inseparable discs (\strongly inseparable discs"), the full matrix must have a nontrivial pair of conjugate complex eigenvalues (i.e., cannot have all real eigenvalues). This hypothesis cannot generally be weakened.NSF grant DMS #0751964Taylor & FrancisUniversidade do MinhoJohnson, CharlesZhang, YulinQiu, FrankFerreira, Carla20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/83882eng0308-108710.1080/03081087.2023.2177581https://www.tandfonline.com/doi/full/10.1080/03081087.2023.2177581info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:25:31Zoai:repositorium.sdum.uminho.pt:1822/83882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:19:46.108909Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices |
title |
Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices |
spellingShingle |
Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices Johnson, Charles Gershgorin discs diagonal similarity sign skew-symmetric matrix Ciências Naturais::Matemáticas Science & Technology |
title_short |
Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices |
title_full |
Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices |
title_fullStr |
Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices |
title_full_unstemmed |
Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices |
title_sort |
Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices |
author |
Johnson, Charles |
author_facet |
Johnson, Charles Zhang, Yulin Qiu, Frank Ferreira, Carla |
author_role |
author |
author2 |
Zhang, Yulin Qiu, Frank Ferreira, Carla |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Johnson, Charles Zhang, Yulin Qiu, Frank Ferreira, Carla |
dc.subject.por.fl_str_mv |
Gershgorin discs diagonal similarity sign skew-symmetric matrix Ciências Naturais::Matemáticas Science & Technology |
topic |
Gershgorin discs diagonal similarity sign skew-symmetric matrix Ciências Naturais::Matemáticas Science & Technology |
description |
We investigate the converse of the known fact that if the Gersgorin discs of a real n-by-n matrix may be separated by positive diagonal similarity then the eigenvalues are real. In the 2-by-2 case, with appropriate signs for the off-diagonal entries, we find that the converse is correct, which raises several questions. First, in the 3-by-3 case, the converse is not generally correct, but, empirically it is frequently true. Then, in the n-by-n case, n >=3, we find that if all the 2-by-2 principal submatrices have inseparable discs (\strongly inseparable discs"), the full matrix must have a nontrivial pair of conjugate complex eigenvalues (i.e., cannot have all real eigenvalues). This hypothesis cannot generally be weakened. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/83882 |
url |
https://hdl.handle.net/1822/83882 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0308-1087 10.1080/03081087.2023.2177581 https://www.tandfonline.com/doi/full/10.1080/03081087.2023.2177581 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132658195759104 |