Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices

Detalhes bibliográficos
Autor(a) principal: Johnson, Charles
Data de Publicação: 2023
Outros Autores: Zhang, Yulin, Qiu, Frank, Ferreira, Carla
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/83882
Resumo: We investigate the converse of the known fact that if the Gersgorin discs of a real n-by-n matrix may be separated by positive diagonal similarity then the eigenvalues are real. In the 2-by-2 case, with appropriate signs for the off-diagonal entries, we find that the converse is correct, which raises several questions. First, in the 3-by-3 case, the converse is not generally correct, but, empirically it is frequently true. Then, in the n-by-n case, n >=3, we find that if all the 2-by-2 principal submatrices have inseparable discs (\strongly inseparable discs"), the full matrix must have a nontrivial pair of conjugate complex eigenvalues (i.e., cannot have all real eigenvalues). This hypothesis cannot generally be weakened.
id RCAP_a3d296ebb372f25ef2fb5fbfc01950fb
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/83882
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matricesGershgorin discsdiagonal similaritysign skew-symmetric matrixCiências Naturais::MatemáticasScience & TechnologyWe investigate the converse of the known fact that if the Gersgorin discs of a real n-by-n matrix may be separated by positive diagonal similarity then the eigenvalues are real. In the 2-by-2 case, with appropriate signs for the off-diagonal entries, we find that the converse is correct, which raises several questions. First, in the 3-by-3 case, the converse is not generally correct, but, empirically it is frequently true. Then, in the n-by-n case, n >=3, we find that if all the 2-by-2 principal submatrices have inseparable discs (\strongly inseparable discs"), the full matrix must have a nontrivial pair of conjugate complex eigenvalues (i.e., cannot have all real eigenvalues). This hypothesis cannot generally be weakened.NSF grant DMS #0751964Taylor & FrancisUniversidade do MinhoJohnson, CharlesZhang, YulinQiu, FrankFerreira, Carla20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/83882eng0308-108710.1080/03081087.2023.2177581https://www.tandfonline.com/doi/full/10.1080/03081087.2023.2177581info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:25:31Zoai:repositorium.sdum.uminho.pt:1822/83882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:19:46.108909Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices
title Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices
spellingShingle Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices
Johnson, Charles
Gershgorin discs
diagonal similarity
sign skew-symmetric matrix
Ciências Naturais::Matemáticas
Science & Technology
title_short Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices
title_full Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices
title_fullStr Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices
title_full_unstemmed Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices
title_sort Inseparable gersgorin discs and the existence of conjugate complex eigenvalues of real matrices
author Johnson, Charles
author_facet Johnson, Charles
Zhang, Yulin
Qiu, Frank
Ferreira, Carla
author_role author
author2 Zhang, Yulin
Qiu, Frank
Ferreira, Carla
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Johnson, Charles
Zhang, Yulin
Qiu, Frank
Ferreira, Carla
dc.subject.por.fl_str_mv Gershgorin discs
diagonal similarity
sign skew-symmetric matrix
Ciências Naturais::Matemáticas
Science & Technology
topic Gershgorin discs
diagonal similarity
sign skew-symmetric matrix
Ciências Naturais::Matemáticas
Science & Technology
description We investigate the converse of the known fact that if the Gersgorin discs of a real n-by-n matrix may be separated by positive diagonal similarity then the eigenvalues are real. In the 2-by-2 case, with appropriate signs for the off-diagonal entries, we find that the converse is correct, which raises several questions. First, in the 3-by-3 case, the converse is not generally correct, but, empirically it is frequently true. Then, in the n-by-n case, n >=3, we find that if all the 2-by-2 principal submatrices have inseparable discs (\strongly inseparable discs"), the full matrix must have a nontrivial pair of conjugate complex eigenvalues (i.e., cannot have all real eigenvalues). This hypothesis cannot generally be weakened.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/83882
url https://hdl.handle.net/1822/83882
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0308-1087
10.1080/03081087.2023.2177581
https://www.tandfonline.com/doi/full/10.1080/03081087.2023.2177581
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132658195759104