Tightening piecewise McCormick relaxations for bilinear problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.9/2947 |
Resumo: | We address nonconvex bilinear problems where the main objective is the computation of a tight lowerbound for the objective function to be minimized. This can be obtained through a mixed-integer linearprogramming formulation relying on the concept of piecewise McCormick relaxation. It works by dividingthe domain of one of the variables in each bilinear term into a given number of partitions, while consid-ering global bounds for the other. We now propose using partition-dependent bounds for the latter so asto further improve the quality of the relaxation. While it involves solving hundreds or even thousands oflinear bound contracting problems in a pre-processing step, the benefit from having a tighter formula-tion more than compensates the additional computational time. Results for a set of water network designproblems show that the new algorithm can lead to orders of magnitude reduction in the optimality gapcompared to commercial solvers. |
id |
RCAP_a41472728da50b0d82d4a060874000b6 |
---|---|
oai_identifier_str |
oai:repositorio.lneg.pt:10400.9/2947 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Tightening piecewise McCormick relaxations for bilinear problemsWater minimizationNonlinear programmingMathematical modellingOptimizationWe address nonconvex bilinear problems where the main objective is the computation of a tight lowerbound for the objective function to be minimized. This can be obtained through a mixed-integer linearprogramming formulation relying on the concept of piecewise McCormick relaxation. It works by dividingthe domain of one of the variables in each bilinear term into a given number of partitions, while consid-ering global bounds for the other. We now propose using partition-dependent bounds for the latter so asto further improve the quality of the relaxation. While it involves solving hundreds or even thousands oflinear bound contracting problems in a pre-processing step, the benefit from having a tighter formula-tion more than compensates the additional computational time. Results for a set of water network designproblems show that the new algorithm can lead to orders of magnitude reduction in the optimality gapcompared to commercial solvers.ElsevierRepositório do LNEGCastro, Pedro2016-04-26T13:55:32Z2015-01-01T00:00:00Z2015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.9/2947engCastro, P.M. - Tightening piecewise McCormick relaxations for bilinear problems. In: Computers and Chemical Engineering, 2015, Vol. 72, p. 300-3110098-135410.1016/j.compchemeng.2014.03.025info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-06T12:28:14Zoai:repositorio.lneg.pt:10400.9/2947Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:36:06.769362Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Tightening piecewise McCormick relaxations for bilinear problems |
title |
Tightening piecewise McCormick relaxations for bilinear problems |
spellingShingle |
Tightening piecewise McCormick relaxations for bilinear problems Castro, Pedro Water minimization Nonlinear programming Mathematical modelling Optimization |
title_short |
Tightening piecewise McCormick relaxations for bilinear problems |
title_full |
Tightening piecewise McCormick relaxations for bilinear problems |
title_fullStr |
Tightening piecewise McCormick relaxations for bilinear problems |
title_full_unstemmed |
Tightening piecewise McCormick relaxations for bilinear problems |
title_sort |
Tightening piecewise McCormick relaxations for bilinear problems |
author |
Castro, Pedro |
author_facet |
Castro, Pedro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório do LNEG |
dc.contributor.author.fl_str_mv |
Castro, Pedro |
dc.subject.por.fl_str_mv |
Water minimization Nonlinear programming Mathematical modelling Optimization |
topic |
Water minimization Nonlinear programming Mathematical modelling Optimization |
description |
We address nonconvex bilinear problems where the main objective is the computation of a tight lowerbound for the objective function to be minimized. This can be obtained through a mixed-integer linearprogramming formulation relying on the concept of piecewise McCormick relaxation. It works by dividingthe domain of one of the variables in each bilinear term into a given number of partitions, while consid-ering global bounds for the other. We now propose using partition-dependent bounds for the latter so asto further improve the quality of the relaxation. While it involves solving hundreds or even thousands oflinear bound contracting problems in a pre-processing step, the benefit from having a tighter formula-tion more than compensates the additional computational time. Results for a set of water network designproblems show that the new algorithm can lead to orders of magnitude reduction in the optimality gapcompared to commercial solvers. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01T00:00:00Z 2015-01-01T00:00:00Z 2016-04-26T13:55:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.9/2947 |
url |
http://hdl.handle.net/10400.9/2947 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Castro, P.M. - Tightening piecewise McCormick relaxations for bilinear problems. In: Computers and Chemical Engineering, 2015, Vol. 72, p. 300-311 0098-1354 10.1016/j.compchemeng.2014.03.025 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130227102711808 |