Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity index

Detalhes bibliográficos
Autor(a) principal: Wu, Zhenni
Data de Publicação: 2022
Outros Autores: Baartman, Jantiene E.M., Nunes, João Pedro, López-Vicente, Manuel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/55443
Resumo: Hydrological and sediment dynamics have changed considerably on the Chinese Loess Plateau during the last six decades due to large scale land use changes and numerous water regulation actions. Understanding the mechanism of sediment transport change and its effects is of great importance to food and environmental security. Numerical approaches are useful to map and assess spatio-temporal patterns in sediment dynamics. This study evaluates monthly and annual sediment connectivity in the Wei River Basin (134,800 km2) at the basin and sub-basin scales using the aggregated index of sediment connectivity (AIC). For the first time, this index is applied on this relatively large regional scale. The two objectives were to (1) evaluate the performance of the AIC at the regional scale, addressing substantial differences among areas, and (2) analyze how each AIC sub-factor co-determines the monthly sediment and connectivity patterns. Results show that AIC has strong or moderate positive correlation with sediment yield from 15 out of 23 stations in the Wei and Jing sub-basin. The Jing sub-basin has the highest sediment connectivity due to degraded vegetation, while the Beiluo sub-basin has the lowest sediment connectivity on average due to better ecological restoration. Within the year, sediment connectivity is highest in April and lowest in January, due to the rainfall regime and intra-annual land cover variations. Among the AIC factors, the rainfall factor has the highest effect on sediment connectivity, implying that functional connectivity (graded by rainfall and soil cover) determines sediment dynamics more than structural connectivity (mainly determined by topography and soil permeability). This study provides one of the first large-scale estimates of spatial and temporal sediment connectivity from hillslopes to river stream and including large reservoirs, which can be further employed to implement regional ecological construction works and environmental catchment management.
id RCAP_a42881ae348da8e2fa00a73b02537283
oai_identifier_str oai:repositorio.ul.pt:10451/55443
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity indexHydrological and sediment dynamics have changed considerably on the Chinese Loess Plateau during the last six decades due to large scale land use changes and numerous water regulation actions. Understanding the mechanism of sediment transport change and its effects is of great importance to food and environmental security. Numerical approaches are useful to map and assess spatio-temporal patterns in sediment dynamics. This study evaluates monthly and annual sediment connectivity in the Wei River Basin (134,800 km2) at the basin and sub-basin scales using the aggregated index of sediment connectivity (AIC). For the first time, this index is applied on this relatively large regional scale. The two objectives were to (1) evaluate the performance of the AIC at the regional scale, addressing substantial differences among areas, and (2) analyze how each AIC sub-factor co-determines the monthly sediment and connectivity patterns. Results show that AIC has strong or moderate positive correlation with sediment yield from 15 out of 23 stations in the Wei and Jing sub-basin. The Jing sub-basin has the highest sediment connectivity due to degraded vegetation, while the Beiluo sub-basin has the lowest sediment connectivity on average due to better ecological restoration. Within the year, sediment connectivity is highest in April and lowest in January, due to the rainfall regime and intra-annual land cover variations. Among the AIC factors, the rainfall factor has the highest effect on sediment connectivity, implying that functional connectivity (graded by rainfall and soil cover) determines sediment dynamics more than structural connectivity (mainly determined by topography and soil permeability). This study provides one of the first large-scale estimates of spatial and temporal sediment connectivity from hillslopes to river stream and including large reservoirs, which can be further employed to implement regional ecological construction works and environmental catchment management.ElsevierRepositório da Universidade de LisboaWu, ZhenniBaartman, Jantiene E.M.Nunes, João PedroLópez-Vicente, Manuel2022-12-19T13:54:12Z2023-022023-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/55443eng10.1016/j.ecolind.2022.109775info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:02:19Zoai:repositorio.ul.pt:10451/55443Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:06:02.698843Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity index
title Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity index
spellingShingle Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity index
Wu, Zhenni
title_short Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity index
title_full Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity index
title_fullStr Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity index
title_full_unstemmed Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity index
title_sort Intra-annual sediment dynamic assessment in the Wei River Basin, China, using the AIC functional-structural connectivity index
author Wu, Zhenni
author_facet Wu, Zhenni
Baartman, Jantiene E.M.
Nunes, João Pedro
López-Vicente, Manuel
author_role author
author2 Baartman, Jantiene E.M.
Nunes, João Pedro
López-Vicente, Manuel
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Wu, Zhenni
Baartman, Jantiene E.M.
Nunes, João Pedro
López-Vicente, Manuel
description Hydrological and sediment dynamics have changed considerably on the Chinese Loess Plateau during the last six decades due to large scale land use changes and numerous water regulation actions. Understanding the mechanism of sediment transport change and its effects is of great importance to food and environmental security. Numerical approaches are useful to map and assess spatio-temporal patterns in sediment dynamics. This study evaluates monthly and annual sediment connectivity in the Wei River Basin (134,800 km2) at the basin and sub-basin scales using the aggregated index of sediment connectivity (AIC). For the first time, this index is applied on this relatively large regional scale. The two objectives were to (1) evaluate the performance of the AIC at the regional scale, addressing substantial differences among areas, and (2) analyze how each AIC sub-factor co-determines the monthly sediment and connectivity patterns. Results show that AIC has strong or moderate positive correlation with sediment yield from 15 out of 23 stations in the Wei and Jing sub-basin. The Jing sub-basin has the highest sediment connectivity due to degraded vegetation, while the Beiluo sub-basin has the lowest sediment connectivity on average due to better ecological restoration. Within the year, sediment connectivity is highest in April and lowest in January, due to the rainfall regime and intra-annual land cover variations. Among the AIC factors, the rainfall factor has the highest effect on sediment connectivity, implying that functional connectivity (graded by rainfall and soil cover) determines sediment dynamics more than structural connectivity (mainly determined by topography and soil permeability). This study provides one of the first large-scale estimates of spatial and temporal sediment connectivity from hillslopes to river stream and including large reservoirs, which can be further employed to implement regional ecological construction works and environmental catchment management.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-19T13:54:12Z
2023-02
2023-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/55443
url http://hdl.handle.net/10451/55443
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.ecolind.2022.109775
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134612892418048