A multi-population hybrid Genetic Programming System
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/25160 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_a43b49c849600a2527202203066bb79e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/25160 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A multi-population hybrid Genetic Programming SystemMachine LearningStatisticsComputational IntelligenceGenetic ProgrammingGenetic AlgorithmEvolutionary AlgorithmOptimization AlgorithmOptimization ProblemOverfittingSemantic AwarenessDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsIn the last few years, geometric semantic genetic programming has incremented its popularity, obtaining interesting results on several real life applications. Nevertheless, the large size of the solutions generated by geometric semantic genetic programming is still an issue, in particular for those applications in which reading and interpreting the final solution is desirable. In this thesis, a new parallel and distributed genetic programming system is introduced with the objective of mitigating this drawback. The proposed system (called MPHGP, which stands for Multi-Population Hybrid Genetic Programming) is composed by two types of subpopulations, one of which runs geometric semantic genetic programming, while the other runs a standard multi-objective genetic programming algorithm that optimizes, at the same time, fitness and size of solutions. The two subpopulations evolve independently and in parallel, exchanging individuals at prefixed synchronization instants. The presented experimental results, obtained on five real-life symbolic regression applications, suggest that MPHGP is able to find solutions that are comparable, or even better, than the ones found by geometric semantic genetic programming, both on training and on unseen testing data. At the same time, MPHGP is also able to find solutions that are significantly smaller than the ones found by geometric semantic genetic programming.Vanneschi, LeonardoRUNGalvão, Bernardo Gil Câmara2017-11-09T16:51:14Z2017-11-022017-11-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/25160TID:201748630enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:13:11Zoai:run.unl.pt:10362/25160Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:28:13.414128Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A multi-population hybrid Genetic Programming System |
title |
A multi-population hybrid Genetic Programming System |
spellingShingle |
A multi-population hybrid Genetic Programming System Galvão, Bernardo Gil Câmara Machine Learning Statistics Computational Intelligence Genetic Programming Genetic Algorithm Evolutionary Algorithm Optimization Algorithm Optimization Problem Overfitting Semantic Awareness |
title_short |
A multi-population hybrid Genetic Programming System |
title_full |
A multi-population hybrid Genetic Programming System |
title_fullStr |
A multi-population hybrid Genetic Programming System |
title_full_unstemmed |
A multi-population hybrid Genetic Programming System |
title_sort |
A multi-population hybrid Genetic Programming System |
author |
Galvão, Bernardo Gil Câmara |
author_facet |
Galvão, Bernardo Gil Câmara |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vanneschi, Leonardo RUN |
dc.contributor.author.fl_str_mv |
Galvão, Bernardo Gil Câmara |
dc.subject.por.fl_str_mv |
Machine Learning Statistics Computational Intelligence Genetic Programming Genetic Algorithm Evolutionary Algorithm Optimization Algorithm Optimization Problem Overfitting Semantic Awareness |
topic |
Machine Learning Statistics Computational Intelligence Genetic Programming Genetic Algorithm Evolutionary Algorithm Optimization Algorithm Optimization Problem Overfitting Semantic Awareness |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-09T16:51:14Z 2017-11-02 2017-11-02T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/25160 TID:201748630 |
url |
http://hdl.handle.net/10362/25160 |
identifier_str_mv |
TID:201748630 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137908588806144 |