Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary data

Detalhes bibliográficos
Autor(a) principal: Mexia-de-Almeida, Maria
Data de Publicação: 2024
Outros Autores: Dias da Silva, Diana, Dinis-Oliveira, Ricardo Jorge, Ribeiro, Cláudia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.48797/sl.2024.230
Resumo: Background: 1,3-Dimethylamylamine (1,3-DMAA), also known as methylhexanamine, is a central nervous system stimulant with structural similarities with amphetamines and therefore presenting overlapping biological and detrimental effects [1]. Despite being banned, the presence of 1,3-DMAA in doping controls and dietary supplements continues to be of significant concern. This molecule has two stereogenic centres and thus four stereoisomers [2]. It is widely recognized that enantiomers may exhibit different biological activity, including pharmacokinetics, pharmacodynamics, and toxicity. Consequently, the development of analytical methods for enantioselective separation of 1,3-DMAA is crucial for an accurate determination of the risks associated with each of these stereoisomers. Objective: To develop an indirect method by gas chromatography coupled to mass spectrometry (GC-MS) for the separation and identification of the stereoisomers of the 1,3-DMAA. Methods: 1,3-DMAA was regenerated with sodium hydroxide, extracted with 0.1% triethylamine in hexane and then derivatized using the enantiomeric pure reagent (R)-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride ((R)-MTPA-Cl). Subsequently, the sample was evaporated, reconstituted in anhydrous ethyl acetate, and analyzed by GC-MS. The chromatographic conditions were established using a capillary column containing 5% diphenyl-95% dimethylpolysiloxane (30 m × 0.25 mm × 0.25 µm), an injector temperature set to 280 ºC, with a temperature ramp starting at 140 ºC and increasing up to 215 ºC at a flow rate of 1 mL/min to a total run of 12.32 min. Results: As preliminary data indicate, the derivatization procedure allowed the formation of 4 diastereomers of 1,3-DMAA. The chromatographic conditions were optimised, allowing for the separation of the four diastereomers within 12 min. Conclusions: Derivatization and chromatographic conditions were established for enantioselective separation of 1,3-DMAA by GC-MS. Further validation of the method will be crucial for understanding the diastereomers' differential pharmacokinetics and pharmacodynamics, and consequently, the perils associated with their presence in food supplement samples.
id RCAP_a444918fb97f4310313ee2c46b41d84a
oai_identifier_str oai:publicacoes.cespu.pt:article/230
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary dataPosterBackground: 1,3-Dimethylamylamine (1,3-DMAA), also known as methylhexanamine, is a central nervous system stimulant with structural similarities with amphetamines and therefore presenting overlapping biological and detrimental effects [1]. Despite being banned, the presence of 1,3-DMAA in doping controls and dietary supplements continues to be of significant concern. This molecule has two stereogenic centres and thus four stereoisomers [2]. It is widely recognized that enantiomers may exhibit different biological activity, including pharmacokinetics, pharmacodynamics, and toxicity. Consequently, the development of analytical methods for enantioselective separation of 1,3-DMAA is crucial for an accurate determination of the risks associated with each of these stereoisomers. Objective: To develop an indirect method by gas chromatography coupled to mass spectrometry (GC-MS) for the separation and identification of the stereoisomers of the 1,3-DMAA. Methods: 1,3-DMAA was regenerated with sodium hydroxide, extracted with 0.1% triethylamine in hexane and then derivatized using the enantiomeric pure reagent (R)-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride ((R)-MTPA-Cl). Subsequently, the sample was evaporated, reconstituted in anhydrous ethyl acetate, and analyzed by GC-MS. The chromatographic conditions were established using a capillary column containing 5% diphenyl-95% dimethylpolysiloxane (30 m × 0.25 mm × 0.25 µm), an injector temperature set to 280 ºC, with a temperature ramp starting at 140 ºC and increasing up to 215 ºC at a flow rate of 1 mL/min to a total run of 12.32 min. Results: As preliminary data indicate, the derivatization procedure allowed the formation of 4 diastereomers of 1,3-DMAA. The chromatographic conditions were optimised, allowing for the separation of the four diastereomers within 12 min. Conclusions: Derivatization and chromatographic conditions were established for enantioselective separation of 1,3-DMAA by GC-MS. Further validation of the method will be crucial for understanding the diastereomers' differential pharmacokinetics and pharmacodynamics, and consequently, the perils associated with their presence in food supplement samples.IUCS-CESPU Publishing2024-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.48797/sl.2024.230https://doi.org/10.48797/sl.2024.230Scientific Letters; Vol. 1 No. Sup 1 (2024)2795-5117reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://publicacoes.cespu.pt/index.php/sl/article/view/230https://publicacoes.cespu.pt/index.php/sl/article/view/230/268Copyright (c) 2024 Maria Mexia-de-Almeida, Diana Dias da Silva, Ricardo Jorge Dinis-Oliveira, Cláudia Ribeiroinfo:eu-repo/semantics/openAccessMexia-de-Almeida, MariaDias da Silva, DianaDinis-Oliveira, Ricardo JorgeRibeiro, Cláudia2024-05-04T08:47:18Zoai:publicacoes.cespu.pt:article/230Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-04T08:47:18Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary data
title Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary data
spellingShingle Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary data
Mexia-de-Almeida, Maria
Poster
title_short Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary data
title_full Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary data
title_fullStr Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary data
title_full_unstemmed Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary data
title_sort Optimization of the derivatization procedure for the separation of the stereoisomers of 1,3-dimethylamylamine (1,3-DMAA) by gas chromatography - preliminary data
author Mexia-de-Almeida, Maria
author_facet Mexia-de-Almeida, Maria
Dias da Silva, Diana
Dinis-Oliveira, Ricardo Jorge
Ribeiro, Cláudia
author_role author
author2 Dias da Silva, Diana
Dinis-Oliveira, Ricardo Jorge
Ribeiro, Cláudia
author2_role author
author
author
dc.contributor.author.fl_str_mv Mexia-de-Almeida, Maria
Dias da Silva, Diana
Dinis-Oliveira, Ricardo Jorge
Ribeiro, Cláudia
dc.subject.por.fl_str_mv Poster
topic Poster
description Background: 1,3-Dimethylamylamine (1,3-DMAA), also known as methylhexanamine, is a central nervous system stimulant with structural similarities with amphetamines and therefore presenting overlapping biological and detrimental effects [1]. Despite being banned, the presence of 1,3-DMAA in doping controls and dietary supplements continues to be of significant concern. This molecule has two stereogenic centres and thus four stereoisomers [2]. It is widely recognized that enantiomers may exhibit different biological activity, including pharmacokinetics, pharmacodynamics, and toxicity. Consequently, the development of analytical methods for enantioselective separation of 1,3-DMAA is crucial for an accurate determination of the risks associated with each of these stereoisomers. Objective: To develop an indirect method by gas chromatography coupled to mass spectrometry (GC-MS) for the separation and identification of the stereoisomers of the 1,3-DMAA. Methods: 1,3-DMAA was regenerated with sodium hydroxide, extracted with 0.1% triethylamine in hexane and then derivatized using the enantiomeric pure reagent (R)-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride ((R)-MTPA-Cl). Subsequently, the sample was evaporated, reconstituted in anhydrous ethyl acetate, and analyzed by GC-MS. The chromatographic conditions were established using a capillary column containing 5% diphenyl-95% dimethylpolysiloxane (30 m × 0.25 mm × 0.25 µm), an injector temperature set to 280 ºC, with a temperature ramp starting at 140 ºC and increasing up to 215 ºC at a flow rate of 1 mL/min to a total run of 12.32 min. Results: As preliminary data indicate, the derivatization procedure allowed the formation of 4 diastereomers of 1,3-DMAA. The chromatographic conditions were optimised, allowing for the separation of the four diastereomers within 12 min. Conclusions: Derivatization and chromatographic conditions were established for enantioselective separation of 1,3-DMAA by GC-MS. Further validation of the method will be crucial for understanding the diastereomers' differential pharmacokinetics and pharmacodynamics, and consequently, the perils associated with their presence in food supplement samples.
publishDate 2024
dc.date.none.fl_str_mv 2024-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.48797/sl.2024.230
https://doi.org/10.48797/sl.2024.230
url https://doi.org/10.48797/sl.2024.230
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://publicacoes.cespu.pt/index.php/sl/article/view/230
https://publicacoes.cespu.pt/index.php/sl/article/view/230/268
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IUCS-CESPU Publishing
publisher.none.fl_str_mv IUCS-CESPU Publishing
dc.source.none.fl_str_mv Scientific Letters; Vol. 1 No. Sup 1 (2024)
2795-5117
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543357523558400