Numerical solution of the stochastic neural field equation with applications to working memory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/85432 |
Resumo: | The main goal of the present work is to investigate the effect of noise in some neural fields, used to simulate working memory processes. The underlying mathematical model is a stochastic integro-differential equation. In order to approximate this equation we apply a numerical scheme which uses the Galerkin method for the space discretization. In this way we obtain a system of stochastic differential equations, which are then approximated in two different ways, using the Euler–Maruyama and the Itô–Taylor methods. We apply this numerical scheme to explain how a population of cortical neurons may encode in its firing pattern simultaneously the nature and time of sequential stimulus events. Numerical examples are presented and their results are discussed. |
id |
RCAP_a47652e3ce6444c5b404928ebef7dada |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/85432 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Numerical solution of the stochastic neural field equation with applications to working memoryStochastic dynamic neural fieldGalerkin methodMulti-bump solutionWorking memoryStochastic neural field equationOne-and multi-bump solutionsCiências Naturais::MatemáticasScience & TechnologyThe main goal of the present work is to investigate the effect of noise in some neural fields, used to simulate working memory processes. The underlying mathematical model is a stochastic integro-differential equation. In order to approximate this equation we apply a numerical scheme which uses the Galerkin method for the space discretization. In this way we obtain a system of stochastic differential equations, which are then approximated in two different ways, using the Euler–Maruyama and the Itô–Taylor methods. We apply this numerical scheme to explain how a population of cortical neurons may encode in its firing pattern simultaneously the nature and time of sequential stimulus events. Numerical examples are presented and their results are discussed.The authors acknowledge the financial support of the Portuguese FCT (Fundacao para a Ciencia e Tecnologia), Portugal, through projects UIDB/04621/2020, UIDP/04621/2020 (IST), UIDB/00013/2020, UIDP/00013/2020 (UMinho) and PTDC/MAT-APL/31393/2017. The authors are also grateful to the reviewers for their careful reading of the text and helpful suggestions that contributed to the improvement of the article.ElsevierUniversidade do MinhoLima, P. M.Erlhagen, WolframKulikova, M.V.Kulikov, G.Yu.2022-06-152022-06-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/85432eng0378-437110.1016/j.physa.2022.127166127166https://www.sciencedirect.com/science/article/abs/pii/S0378437122001741info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:07:20Zoai:repositorium.sdum.uminho.pt:1822/85432Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:58:14.830430Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Numerical solution of the stochastic neural field equation with applications to working memory |
title |
Numerical solution of the stochastic neural field equation with applications to working memory |
spellingShingle |
Numerical solution of the stochastic neural field equation with applications to working memory Lima, P. M. Stochastic dynamic neural field Galerkin method Multi-bump solution Working memory Stochastic neural field equation One-and multi-bump solutions Ciências Naturais::Matemáticas Science & Technology |
title_short |
Numerical solution of the stochastic neural field equation with applications to working memory |
title_full |
Numerical solution of the stochastic neural field equation with applications to working memory |
title_fullStr |
Numerical solution of the stochastic neural field equation with applications to working memory |
title_full_unstemmed |
Numerical solution of the stochastic neural field equation with applications to working memory |
title_sort |
Numerical solution of the stochastic neural field equation with applications to working memory |
author |
Lima, P. M. |
author_facet |
Lima, P. M. Erlhagen, Wolfram Kulikova, M.V. Kulikov, G.Yu. |
author_role |
author |
author2 |
Erlhagen, Wolfram Kulikova, M.V. Kulikov, G.Yu. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Lima, P. M. Erlhagen, Wolfram Kulikova, M.V. Kulikov, G.Yu. |
dc.subject.por.fl_str_mv |
Stochastic dynamic neural field Galerkin method Multi-bump solution Working memory Stochastic neural field equation One-and multi-bump solutions Ciências Naturais::Matemáticas Science & Technology |
topic |
Stochastic dynamic neural field Galerkin method Multi-bump solution Working memory Stochastic neural field equation One-and multi-bump solutions Ciências Naturais::Matemáticas Science & Technology |
description |
The main goal of the present work is to investigate the effect of noise in some neural fields, used to simulate working memory processes. The underlying mathematical model is a stochastic integro-differential equation. In order to approximate this equation we apply a numerical scheme which uses the Galerkin method for the space discretization. In this way we obtain a system of stochastic differential equations, which are then approximated in two different ways, using the Euler–Maruyama and the Itô–Taylor methods. We apply this numerical scheme to explain how a population of cortical neurons may encode in its firing pattern simultaneously the nature and time of sequential stimulus events. Numerical examples are presented and their results are discussed. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-15 2022-06-15T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/85432 |
url |
https://hdl.handle.net/1822/85432 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0378-4371 10.1016/j.physa.2022.127166 127166 https://www.sciencedirect.com/science/article/abs/pii/S0378437122001741 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132372403224576 |