Numerical solution of the stochastic neural field equation with applications to working memory

Detalhes bibliográficos
Autor(a) principal: Lima, P. M.
Data de Publicação: 2022
Outros Autores: Erlhagen, Wolfram, Kulikova, M.V., Kulikov, G.Yu.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/85432
Resumo: The main goal of the present work is to investigate the effect of noise in some neural fields, used to simulate working memory processes. The underlying mathematical model is a stochastic integro-differential equation. In order to approximate this equation we apply a numerical scheme which uses the Galerkin method for the space discretization. In this way we obtain a system of stochastic differential equations, which are then approximated in two different ways, using the Euler–Maruyama and the Itô–Taylor methods. We apply this numerical scheme to explain how a population of cortical neurons may encode in its firing pattern simultaneously the nature and time of sequential stimulus events. Numerical examples are presented and their results are discussed.
id RCAP_a47652e3ce6444c5b404928ebef7dada
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/85432
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Numerical solution of the stochastic neural field equation with applications to working memoryStochastic dynamic neural fieldGalerkin methodMulti-bump solutionWorking memoryStochastic neural field equationOne-and multi-bump solutionsCiências Naturais::MatemáticasScience & TechnologyThe main goal of the present work is to investigate the effect of noise in some neural fields, used to simulate working memory processes. The underlying mathematical model is a stochastic integro-differential equation. In order to approximate this equation we apply a numerical scheme which uses the Galerkin method for the space discretization. In this way we obtain a system of stochastic differential equations, which are then approximated in two different ways, using the Euler–Maruyama and the Itô–Taylor methods. We apply this numerical scheme to explain how a population of cortical neurons may encode in its firing pattern simultaneously the nature and time of sequential stimulus events. Numerical examples are presented and their results are discussed.The authors acknowledge the financial support of the Portuguese FCT (Fundacao para a Ciencia e Tecnologia), Portugal, through projects UIDB/04621/2020, UIDP/04621/2020 (IST), UIDB/00013/2020, UIDP/00013/2020 (UMinho) and PTDC/MAT-APL/31393/2017. The authors are also grateful to the reviewers for their careful reading of the text and helpful suggestions that contributed to the improvement of the article.ElsevierUniversidade do MinhoLima, P. M.Erlhagen, WolframKulikova, M.V.Kulikov, G.Yu.2022-06-152022-06-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/85432eng0378-437110.1016/j.physa.2022.127166127166https://www.sciencedirect.com/science/article/abs/pii/S0378437122001741info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:07:20Zoai:repositorium.sdum.uminho.pt:1822/85432Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:58:14.830430Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Numerical solution of the stochastic neural field equation with applications to working memory
title Numerical solution of the stochastic neural field equation with applications to working memory
spellingShingle Numerical solution of the stochastic neural field equation with applications to working memory
Lima, P. M.
Stochastic dynamic neural field
Galerkin method
Multi-bump solution
Working memory
Stochastic neural field equation
One-and multi-bump solutions
Ciências Naturais::Matemáticas
Science & Technology
title_short Numerical solution of the stochastic neural field equation with applications to working memory
title_full Numerical solution of the stochastic neural field equation with applications to working memory
title_fullStr Numerical solution of the stochastic neural field equation with applications to working memory
title_full_unstemmed Numerical solution of the stochastic neural field equation with applications to working memory
title_sort Numerical solution of the stochastic neural field equation with applications to working memory
author Lima, P. M.
author_facet Lima, P. M.
Erlhagen, Wolfram
Kulikova, M.V.
Kulikov, G.Yu.
author_role author
author2 Erlhagen, Wolfram
Kulikova, M.V.
Kulikov, G.Yu.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Lima, P. M.
Erlhagen, Wolfram
Kulikova, M.V.
Kulikov, G.Yu.
dc.subject.por.fl_str_mv Stochastic dynamic neural field
Galerkin method
Multi-bump solution
Working memory
Stochastic neural field equation
One-and multi-bump solutions
Ciências Naturais::Matemáticas
Science & Technology
topic Stochastic dynamic neural field
Galerkin method
Multi-bump solution
Working memory
Stochastic neural field equation
One-and multi-bump solutions
Ciências Naturais::Matemáticas
Science & Technology
description The main goal of the present work is to investigate the effect of noise in some neural fields, used to simulate working memory processes. The underlying mathematical model is a stochastic integro-differential equation. In order to approximate this equation we apply a numerical scheme which uses the Galerkin method for the space discretization. In this way we obtain a system of stochastic differential equations, which are then approximated in two different ways, using the Euler–Maruyama and the Itô–Taylor methods. We apply this numerical scheme to explain how a population of cortical neurons may encode in its firing pattern simultaneously the nature and time of sequential stimulus events. Numerical examples are presented and their results are discussed.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-15
2022-06-15T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/85432
url https://hdl.handle.net/1822/85432
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0378-4371
10.1016/j.physa.2022.127166
127166
https://www.sciencedirect.com/science/article/abs/pii/S0378437122001741
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132372403224576