Project i-RoCS: dirt detection system based on computer vision

Detalhes bibliográficos
Autor(a) principal: Carapinha, Rui Filipe Santos
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/30482
Resumo: The ultimate goal of the i-RoCs project is to provide an e cient automatic robotic solution to clean industrial oors. The solution will integrate stateof- art computer vision algorithms for the navigation of the robot and for the monitoring of the cleaning process. Industrial oor cleaning is one of the most important tasks for the security of the personnel in a factory. In the worst case, a damaged/slippery oor can lead to the most various accidents. This is the main reason why the most advanced technologies should be involved in this area. In this thesis we pretend to give a step towards that goal. Digital cameras with the proper use and the proper algorithms can be one of the most rich sensors that can be used in the industrial environment due to the information they can capture. This information is a conversion of the real world into digital information that can be further processed. From this information, low-level computer vision algorithms can detect a lot of features from an image such as colors, lines, blobs, contours, edges, patterns, among others. In this thesis, we give an introduction of state-of-art technology to the cleaning task in a factory. For that purpose, we present a study about the implementation of cameras and digital image processing to detect dirt in industrial oors. We propose a method for automatic calibration of the camera parameters to tackle the di cult environment that can be found inside factories in terms of the light conditions. We developed algorithms for extraction of low-level characteristics to be used in the detection of dirt that obtained promising results in terms of detection results. However, they are not satisfactory in terms of performance if we consider them to be applied in real time on a mobile robot. The last step was the implementation of Deep Learning, one of the most promising technologies of the past few years used in image processing. This proposed solution is a segmentation network followed by a regression network. The segmentation will classify the several types of patterns existing on the ground and the regression will output the level of dirtiness of each area.
id RCAP_a47dcf246112f883362f823759bba9c2
oai_identifier_str oai:ria.ua.pt:10773/30482
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Project i-RoCS: dirt detection system based on computer visionTemplate matchingRoboticsROSComputer visionDirt detectionOpenCVCamera calibrationSaliencyDeep learningThe ultimate goal of the i-RoCs project is to provide an e cient automatic robotic solution to clean industrial oors. The solution will integrate stateof- art computer vision algorithms for the navigation of the robot and for the monitoring of the cleaning process. Industrial oor cleaning is one of the most important tasks for the security of the personnel in a factory. In the worst case, a damaged/slippery oor can lead to the most various accidents. This is the main reason why the most advanced technologies should be involved in this area. In this thesis we pretend to give a step towards that goal. Digital cameras with the proper use and the proper algorithms can be one of the most rich sensors that can be used in the industrial environment due to the information they can capture. This information is a conversion of the real world into digital information that can be further processed. From this information, low-level computer vision algorithms can detect a lot of features from an image such as colors, lines, blobs, contours, edges, patterns, among others. In this thesis, we give an introduction of state-of-art technology to the cleaning task in a factory. For that purpose, we present a study about the implementation of cameras and digital image processing to detect dirt in industrial oors. We propose a method for automatic calibration of the camera parameters to tackle the di cult environment that can be found inside factories in terms of the light conditions. We developed algorithms for extraction of low-level characteristics to be used in the detection of dirt that obtained promising results in terms of detection results. However, they are not satisfactory in terms of performance if we consider them to be applied in real time on a mobile robot. The last step was the implementation of Deep Learning, one of the most promising technologies of the past few years used in image processing. This proposed solution is a segmentation network followed by a regression network. The segmentation will classify the several types of patterns existing on the ground and the regression will output the level of dirtiness of each area.O objectivo final do projecto i-RoCs é fornecer uma solução robótica automática e eficiente para a limpeza de pavimentos industriais. A solução integrará algoritmos de visão por computador de última geração para a navegação do robô e para a monitorização do processo de limpeza. A limpeza de superfícies industriais é uma das tarefas mais importantes para a segurança do pessoal de uma fábrica. No pior dos casos, um piso danificado/escorregadio pode levar aos mais variados acidentes. Esta é a principal razão pela qual as tecnologias mais avançadas devem estar envolvidas nesta área. Nesta tese é dado um passo nesse sentido. As câmaras digitais com o uso adequado e os algoritmos adequados podem ser um dos sensores mais ricos que podem ser utilizados no ambiente industrial devido à informação que podem captar. Esta informação é uma conversão do mundo real em informação digital que pode ser processada posteriormente. A partir desta informação os algoritmos de baixo nível de visão por computador podem detectar muitas características tais como cores, linhas, formas, contornos, bordas, entre outros. Nesta tese, é feita uma introdução de tecnologia de ponta para a tarefa de limpeza de uma fábrica. Para tal, apresentamos um estudo sobre a implementação de câmaras e processamento digital de imagem para detetar sujidade em pavimentos industriais. É proposto um método de calibração automática dos parâmetros da câmara para enfrentar o ambiente difícil que pode ser encontrado dentro das fábricas em termos das condições de luz. Desenvolvemos algoritmos de extracção de características de baixo nível a utilizar na deteção de sujidade que obtiveram bons resultados em termos de detecção. No entanto, não são satisfatórios em termos de desempenho se considerarmos que serão aplicados num robô móvel. O último passo foi a implementação de algoritmos baseados no Deep Learning, uma das tecnologias mais promissoras dos últimos anos, utilizada no processamento de imagens. Esta solução proposta é uma rede de segmentação seguida de uma rede de regressão. A segmentação irá classificar os vários tipos de padrões existentes no terreno e a regressão irá produzir o nível de sujidade de cada área.2021-02-04T10:27:17Z2020-07-30T00:00:00Z2020-07-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/30482engCarapinha, Rui Filipe Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:58:59Zoai:ria.ua.pt:10773/30482Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:35.660458Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Project i-RoCS: dirt detection system based on computer vision
title Project i-RoCS: dirt detection system based on computer vision
spellingShingle Project i-RoCS: dirt detection system based on computer vision
Carapinha, Rui Filipe Santos
Template matching
Robotics
ROS
Computer vision
Dirt detection
OpenCV
Camera calibration
Saliency
Deep learning
title_short Project i-RoCS: dirt detection system based on computer vision
title_full Project i-RoCS: dirt detection system based on computer vision
title_fullStr Project i-RoCS: dirt detection system based on computer vision
title_full_unstemmed Project i-RoCS: dirt detection system based on computer vision
title_sort Project i-RoCS: dirt detection system based on computer vision
author Carapinha, Rui Filipe Santos
author_facet Carapinha, Rui Filipe Santos
author_role author
dc.contributor.author.fl_str_mv Carapinha, Rui Filipe Santos
dc.subject.por.fl_str_mv Template matching
Robotics
ROS
Computer vision
Dirt detection
OpenCV
Camera calibration
Saliency
Deep learning
topic Template matching
Robotics
ROS
Computer vision
Dirt detection
OpenCV
Camera calibration
Saliency
Deep learning
description The ultimate goal of the i-RoCs project is to provide an e cient automatic robotic solution to clean industrial oors. The solution will integrate stateof- art computer vision algorithms for the navigation of the robot and for the monitoring of the cleaning process. Industrial oor cleaning is one of the most important tasks for the security of the personnel in a factory. In the worst case, a damaged/slippery oor can lead to the most various accidents. This is the main reason why the most advanced technologies should be involved in this area. In this thesis we pretend to give a step towards that goal. Digital cameras with the proper use and the proper algorithms can be one of the most rich sensors that can be used in the industrial environment due to the information they can capture. This information is a conversion of the real world into digital information that can be further processed. From this information, low-level computer vision algorithms can detect a lot of features from an image such as colors, lines, blobs, contours, edges, patterns, among others. In this thesis, we give an introduction of state-of-art technology to the cleaning task in a factory. For that purpose, we present a study about the implementation of cameras and digital image processing to detect dirt in industrial oors. We propose a method for automatic calibration of the camera parameters to tackle the di cult environment that can be found inside factories in terms of the light conditions. We developed algorithms for extraction of low-level characteristics to be used in the detection of dirt that obtained promising results in terms of detection results. However, they are not satisfactory in terms of performance if we consider them to be applied in real time on a mobile robot. The last step was the implementation of Deep Learning, one of the most promising technologies of the past few years used in image processing. This proposed solution is a segmentation network followed by a regression network. The segmentation will classify the several types of patterns existing on the ground and the regression will output the level of dirtiness of each area.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-30T00:00:00Z
2020-07-30
2021-02-04T10:27:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/30482
url http://hdl.handle.net/10773/30482
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137681651793920