Incremental scenario representations for autonomous driving using geometric polygonal primitives

Detalhes bibliográficos
Autor(a) principal: Miguel Riem Oliveira
Data de Publicação: 2016
Outros Autores: Santos,V, Sappa,AD, Dias,P, António Paulo Moreira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/4982
http://dx.doi.org/10.1016/j.robot.2016.05.011
Resumo: When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.
id RCAP_a48bfd3814a953f02c038003c4cd1cd3
oai_identifier_str oai:repositorio.inesctec.pt:123456789/4982
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Incremental scenario representations for autonomous driving using geometric polygonal primitivesWhen an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.2017-12-27T16:25:51Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/4982http://dx.doi.org/10.1016/j.robot.2016.05.011engMiguel Riem OliveiraSantos,VSappa,ADDias,PAntónio Paulo Moreirainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:54Zoai:repositorio.inesctec.pt:123456789/4982Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:47.078573Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Incremental scenario representations for autonomous driving using geometric polygonal primitives
title Incremental scenario representations for autonomous driving using geometric polygonal primitives
spellingShingle Incremental scenario representations for autonomous driving using geometric polygonal primitives
Miguel Riem Oliveira
title_short Incremental scenario representations for autonomous driving using geometric polygonal primitives
title_full Incremental scenario representations for autonomous driving using geometric polygonal primitives
title_fullStr Incremental scenario representations for autonomous driving using geometric polygonal primitives
title_full_unstemmed Incremental scenario representations for autonomous driving using geometric polygonal primitives
title_sort Incremental scenario representations for autonomous driving using geometric polygonal primitives
author Miguel Riem Oliveira
author_facet Miguel Riem Oliveira
Santos,V
Sappa,AD
Dias,P
António Paulo Moreira
author_role author
author2 Santos,V
Sappa,AD
Dias,P
António Paulo Moreira
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Miguel Riem Oliveira
Santos,V
Sappa,AD
Dias,P
António Paulo Moreira
description When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2016
2017-12-27T16:25:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/4982
http://dx.doi.org/10.1016/j.robot.2016.05.011
url http://repositorio.inesctec.pt/handle/123456789/4982
http://dx.doi.org/10.1016/j.robot.2016.05.011
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131611862663168