On the second order holonomic equation for Sobolev-type orthogonal polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/12640 |
Resumo: | It is presented a general approach to the study of orthogonal polynomials related to Sobolev inner products which are defined in terms of divided-difference operators having the fundamental property of leaving a polynomial of degree $n-1$ when applied to a polynomial of degree $n$. This paper gives analytic properties for the orthogonal polynomials, including the second order holonomic difference equation satisfied by them. |
id |
RCAP_a48edc41f2248475ad54c45099bd6655 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/12640 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the second order holonomic equation for Sobolev-type orthogonal polynomialsSobolev-type orthogonal polynomialsSpecial non-uniform latticesSemiclassical classHolonomic difference equationIt is presented a general approach to the study of orthogonal polynomials related to Sobolev inner products which are defined in terms of divided-difference operators having the fundamental property of leaving a polynomial of degree $n-1$ when applied to a polynomial of degree $n$. This paper gives analytic properties for the orthogonal polynomials, including the second order holonomic difference equation satisfied by them.uBibliorumRebocho, Maria das Neves2023-01-12T10:57:34Z2022-052022-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/12640engRebocho, M.N. (2022). On the second-order holonomic equation for Sobolev-type orthogonal polynomials. Applicable Analysis 101, no. 1, 314 - 336.https://doi.org/10.1080/00036811.2020.1742881info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:55:53Zoai:ubibliorum.ubi.pt:10400.6/12640Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:52:12.161257Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the second order holonomic equation for Sobolev-type orthogonal polynomials |
title |
On the second order holonomic equation for Sobolev-type orthogonal polynomials |
spellingShingle |
On the second order holonomic equation for Sobolev-type orthogonal polynomials Rebocho, Maria das Neves Sobolev-type orthogonal polynomials Special non-uniform lattices Semiclassical class Holonomic difference equation |
title_short |
On the second order holonomic equation for Sobolev-type orthogonal polynomials |
title_full |
On the second order holonomic equation for Sobolev-type orthogonal polynomials |
title_fullStr |
On the second order holonomic equation for Sobolev-type orthogonal polynomials |
title_full_unstemmed |
On the second order holonomic equation for Sobolev-type orthogonal polynomials |
title_sort |
On the second order holonomic equation for Sobolev-type orthogonal polynomials |
author |
Rebocho, Maria das Neves |
author_facet |
Rebocho, Maria das Neves |
author_role |
author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Rebocho, Maria das Neves |
dc.subject.por.fl_str_mv |
Sobolev-type orthogonal polynomials Special non-uniform lattices Semiclassical class Holonomic difference equation |
topic |
Sobolev-type orthogonal polynomials Special non-uniform lattices Semiclassical class Holonomic difference equation |
description |
It is presented a general approach to the study of orthogonal polynomials related to Sobolev inner products which are defined in terms of divided-difference operators having the fundamental property of leaving a polynomial of degree $n-1$ when applied to a polynomial of degree $n$. This paper gives analytic properties for the orthogonal polynomials, including the second order holonomic difference equation satisfied by them. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 2022-05-01T00:00:00Z 2023-01-12T10:57:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/12640 |
url |
http://hdl.handle.net/10400.6/12640 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Rebocho, M.N. (2022). On the second-order holonomic equation for Sobolev-type orthogonal polynomials. Applicable Analysis 101, no. 1, 314 - 336. https://doi.org/10.1080/00036811.2020.1742881 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136410636124160 |