Black hole spontaneous scalarisation with a positive cosmological constant

Detalhes bibliográficos
Autor(a) principal: Brihaye, Y.
Data de Publicação: 2020
Outros Autores: Herdeiro, C. A. R., Radu, E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29850
Resumo: A scalar field non-minimally coupled to certain geometric [or matter] invariants which are sourced by [electro]vacuum black holes (BHs) may spontaneously grow around the latter, due to a tachyonic instability. This process is expected to lead to a new, dynamically preferred, equilibrium state: a scalarised BH. The most studied geometric [matter] source term for such spontaneous BH scalarisation is the Gauss-Bonnet quadratic curvature [Maxwell invariant]. This phenomenon has been mostly analysed for asymptotically flat spacetimes. Here we consider the impact of a positive cosmological constant, which introduces a cosmological horizon. The cosmological constant does not change the local conditions on the scalar coupling for a tachyonic instability of the scalar-free BHs to emerge. But it leaves a significant imprint on the possible new scalarised BHs. It is shown that no scalarised BH solutions exist, under a smoothness assumption, if the scalar field is confined between the BH and cosmological horizons. Admitting the scalar field can extend beyond the cosmological horizon, we construct new scalarised BHs. These are asymptotically de Sitter in the (matter) Einstein-Maxwell-scalar model, with only mild difference with respect to their asymptotically flat counterparts. But in the (geometric) extended-scalartensor-Gauss-Bonnet-scalar model, they have necessarily non-standard asymptotics, as the tachyonic instability dominates in the far field. This interpretation is supported by the analysis of a test tachyon on a de Sitter background. (C) 2020 The Authors. Published by Elsevier B.V.
id RCAP_a51644b672b95294078e842a4fdec23b
oai_identifier_str oai:ria.ua.pt:10773/29850
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Black hole spontaneous scalarisation with a positive cosmological constantA scalar field non-minimally coupled to certain geometric [or matter] invariants which are sourced by [electro]vacuum black holes (BHs) may spontaneously grow around the latter, due to a tachyonic instability. This process is expected to lead to a new, dynamically preferred, equilibrium state: a scalarised BH. The most studied geometric [matter] source term for such spontaneous BH scalarisation is the Gauss-Bonnet quadratic curvature [Maxwell invariant]. This phenomenon has been mostly analysed for asymptotically flat spacetimes. Here we consider the impact of a positive cosmological constant, which introduces a cosmological horizon. The cosmological constant does not change the local conditions on the scalar coupling for a tachyonic instability of the scalar-free BHs to emerge. But it leaves a significant imprint on the possible new scalarised BHs. It is shown that no scalarised BH solutions exist, under a smoothness assumption, if the scalar field is confined between the BH and cosmological horizons. Admitting the scalar field can extend beyond the cosmological horizon, we construct new scalarised BHs. These are asymptotically de Sitter in the (matter) Einstein-Maxwell-scalar model, with only mild difference with respect to their asymptotically flat counterparts. But in the (geometric) extended-scalartensor-Gauss-Bonnet-scalar model, they have necessarily non-standard asymptotics, as the tachyonic instability dominates in the far field. This interpretation is supported by the analysis of a test tachyon on a de Sitter background. (C) 2020 The Authors. Published by Elsevier B.V.Elsevier2020-11-20T15:48:31Z2020-03-10T00:00:00Z2020-03-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/29850eng0370-269310.1016/j.physletb.2020.135269Brihaye, Y.Herdeiro, C. A. R.Radu, E.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:40Zoai:ria.ua.pt:10773/29850Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:03.337265Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Black hole spontaneous scalarisation with a positive cosmological constant
title Black hole spontaneous scalarisation with a positive cosmological constant
spellingShingle Black hole spontaneous scalarisation with a positive cosmological constant
Brihaye, Y.
title_short Black hole spontaneous scalarisation with a positive cosmological constant
title_full Black hole spontaneous scalarisation with a positive cosmological constant
title_fullStr Black hole spontaneous scalarisation with a positive cosmological constant
title_full_unstemmed Black hole spontaneous scalarisation with a positive cosmological constant
title_sort Black hole spontaneous scalarisation with a positive cosmological constant
author Brihaye, Y.
author_facet Brihaye, Y.
Herdeiro, C. A. R.
Radu, E.
author_role author
author2 Herdeiro, C. A. R.
Radu, E.
author2_role author
author
dc.contributor.author.fl_str_mv Brihaye, Y.
Herdeiro, C. A. R.
Radu, E.
description A scalar field non-minimally coupled to certain geometric [or matter] invariants which are sourced by [electro]vacuum black holes (BHs) may spontaneously grow around the latter, due to a tachyonic instability. This process is expected to lead to a new, dynamically preferred, equilibrium state: a scalarised BH. The most studied geometric [matter] source term for such spontaneous BH scalarisation is the Gauss-Bonnet quadratic curvature [Maxwell invariant]. This phenomenon has been mostly analysed for asymptotically flat spacetimes. Here we consider the impact of a positive cosmological constant, which introduces a cosmological horizon. The cosmological constant does not change the local conditions on the scalar coupling for a tachyonic instability of the scalar-free BHs to emerge. But it leaves a significant imprint on the possible new scalarised BHs. It is shown that no scalarised BH solutions exist, under a smoothness assumption, if the scalar field is confined between the BH and cosmological horizons. Admitting the scalar field can extend beyond the cosmological horizon, we construct new scalarised BHs. These are asymptotically de Sitter in the (matter) Einstein-Maxwell-scalar model, with only mild difference with respect to their asymptotically flat counterparts. But in the (geometric) extended-scalartensor-Gauss-Bonnet-scalar model, they have necessarily non-standard asymptotics, as the tachyonic instability dominates in the far field. This interpretation is supported by the analysis of a test tachyon on a de Sitter background. (C) 2020 The Authors. Published by Elsevier B.V.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-20T15:48:31Z
2020-03-10T00:00:00Z
2020-03-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29850
url http://hdl.handle.net/10773/29850
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0370-2693
10.1016/j.physletb.2020.135269
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137676180324352