The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1

Detalhes bibliográficos
Autor(a) principal: Walter, Jonas
Data de Publicação: 2021
Outros Autores: Bolognin, Silvia, Poovathingal, Suresh K., Magni, Stefano, Gérard, Deborah, Antony, Paul M. A., Nickels, Sarah L., Salamanca, Luis, Berger, Emanuel, Smits, Lisa M., Grzyb, Kamil, Perfeito, Rita, Hoel, Fredrik, Qing, Xiaobing, Ohnmacht, Jochen, Bertacchi, Michele, Jarazo, Javier, Ignac, Tomasz, Monzel, Anna S., Gonzalez-Cano, Laura, Krüger, Rejko, Sauter, Thomas, Studer, Michèle, Almeida, Luís Pereira de, Tronstad, Karl J., Sinkkonen, Lasse, Skupin, Alexander, Schwamborn, Jens C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/103827
https://doi.org/10.1016/j.celrep.2021.109864
Resumo: Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.
id RCAP_a53036f6809e0dbac137d895a5f5b301
oai_identifier_str oai:estudogeral.uc.pt:10316/103827
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1dopaminergic neuronsLRRK2NR2F1Parkinson's diseaseAnimalsBrainCOUP Transcription Factor ICell CycleCell LineCell ProliferationCell SurvivalDopaminergic NeuronsFemaleHumansInduced Pluripotent Stem CellsLeucine-Rich Repeat Serine-Threonine Protein Kinase-2MaleMice, 129 StrainMice, KnockoutMutationNeural Stem CellsParkinson DiseasePhenotypeRNA-SeqSignal TransductionSingle-Cell AnalysisTime FactorsNeurogenesisIncreasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.Elsevier2021-10-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/103827http://hdl.handle.net/10316/103827https://doi.org/10.1016/j.celrep.2021.109864eng22111247Walter, JonasBolognin, SilviaPoovathingal, Suresh K.Magni, StefanoGérard, DeborahAntony, Paul M. A.Nickels, Sarah L.Salamanca, LuisBerger, EmanuelSmits, Lisa M.Grzyb, KamilPerfeito, RitaHoel, FredrikQing, XiaobingOhnmacht, JochenBertacchi, MicheleJarazo, JavierIgnac, TomaszMonzel, Anna S.Gonzalez-Cano, LauraKrüger, RejkoSauter, ThomasStuder, MichèleAlmeida, Luís Pereira deTronstad, Karl J.Sinkkonen, LasseSkupin, AlexanderSchwamborn, Jens C.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-30T21:38:29Zoai:estudogeral.uc.pt:10316/103827Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:20:35.937507Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1
title The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1
spellingShingle The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1
Walter, Jonas
dopaminergic neurons
LRRK2
NR2F1
Parkinson's disease
Animals
Brain
COUP Transcription Factor I
Cell Cycle
Cell Line
Cell Proliferation
Cell Survival
Dopaminergic Neurons
Female
Humans
Induced Pluripotent Stem Cells
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
Male
Mice, 129 Strain
Mice, Knockout
Mutation
Neural Stem Cells
Parkinson Disease
Phenotype
RNA-Seq
Signal Transduction
Single-Cell Analysis
Time Factors
Neurogenesis
title_short The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1
title_full The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1
title_fullStr The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1
title_full_unstemmed The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1
title_sort The Parkinson's-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1
author Walter, Jonas
author_facet Walter, Jonas
Bolognin, Silvia
Poovathingal, Suresh K.
Magni, Stefano
Gérard, Deborah
Antony, Paul M. A.
Nickels, Sarah L.
Salamanca, Luis
Berger, Emanuel
Smits, Lisa M.
Grzyb, Kamil
Perfeito, Rita
Hoel, Fredrik
Qing, Xiaobing
Ohnmacht, Jochen
Bertacchi, Michele
Jarazo, Javier
Ignac, Tomasz
Monzel, Anna S.
Gonzalez-Cano, Laura
Krüger, Rejko
Sauter, Thomas
Studer, Michèle
Almeida, Luís Pereira de
Tronstad, Karl J.
Sinkkonen, Lasse
Skupin, Alexander
Schwamborn, Jens C.
author_role author
author2 Bolognin, Silvia
Poovathingal, Suresh K.
Magni, Stefano
Gérard, Deborah
Antony, Paul M. A.
Nickels, Sarah L.
Salamanca, Luis
Berger, Emanuel
Smits, Lisa M.
Grzyb, Kamil
Perfeito, Rita
Hoel, Fredrik
Qing, Xiaobing
Ohnmacht, Jochen
Bertacchi, Michele
Jarazo, Javier
Ignac, Tomasz
Monzel, Anna S.
Gonzalez-Cano, Laura
Krüger, Rejko
Sauter, Thomas
Studer, Michèle
Almeida, Luís Pereira de
Tronstad, Karl J.
Sinkkonen, Lasse
Skupin, Alexander
Schwamborn, Jens C.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Walter, Jonas
Bolognin, Silvia
Poovathingal, Suresh K.
Magni, Stefano
Gérard, Deborah
Antony, Paul M. A.
Nickels, Sarah L.
Salamanca, Luis
Berger, Emanuel
Smits, Lisa M.
Grzyb, Kamil
Perfeito, Rita
Hoel, Fredrik
Qing, Xiaobing
Ohnmacht, Jochen
Bertacchi, Michele
Jarazo, Javier
Ignac, Tomasz
Monzel, Anna S.
Gonzalez-Cano, Laura
Krüger, Rejko
Sauter, Thomas
Studer, Michèle
Almeida, Luís Pereira de
Tronstad, Karl J.
Sinkkonen, Lasse
Skupin, Alexander
Schwamborn, Jens C.
dc.subject.por.fl_str_mv dopaminergic neurons
LRRK2
NR2F1
Parkinson's disease
Animals
Brain
COUP Transcription Factor I
Cell Cycle
Cell Line
Cell Proliferation
Cell Survival
Dopaminergic Neurons
Female
Humans
Induced Pluripotent Stem Cells
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
Male
Mice, 129 Strain
Mice, Knockout
Mutation
Neural Stem Cells
Parkinson Disease
Phenotype
RNA-Seq
Signal Transduction
Single-Cell Analysis
Time Factors
Neurogenesis
topic dopaminergic neurons
LRRK2
NR2F1
Parkinson's disease
Animals
Brain
COUP Transcription Factor I
Cell Cycle
Cell Line
Cell Proliferation
Cell Survival
Dopaminergic Neurons
Female
Humans
Induced Pluripotent Stem Cells
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
Male
Mice, 129 Strain
Mice, Knockout
Mutation
Neural Stem Cells
Parkinson Disease
Phenotype
RNA-Seq
Signal Transduction
Single-Cell Analysis
Time Factors
Neurogenesis
description Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/103827
http://hdl.handle.net/10316/103827
https://doi.org/10.1016/j.celrep.2021.109864
url http://hdl.handle.net/10316/103827
https://doi.org/10.1016/j.celrep.2021.109864
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 22111247
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134098370854912