Weierstrass method for quaternionic polynomial root-finding
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/51931 |
Resumo: | Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas that motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper, we propose a Weierstrass-like method for finding simultaneously all the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented. |
id |
RCAP_a55c5cbb43018e75791bb55eb0afeacb |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/51931 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Weierstrass method for quaternionic polynomial root-findingQuaternionic polynomialsRoot-finding methodsWeierstrass algorithmScience & TechnologyQuaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas that motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper, we propose a Weierstrass-like method for finding simultaneously all the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.Research at CMAT was financed by Portuguese Funds through FCT, within the Project UID/MAT/00013/2013. Research at NIPE was carried out within the funding with COMPETE reference number POCI-01-0145-FEDER-006683 (UID/ECO/03182/2013), with the FCT/MEC’s (Funda¸c˜ao para a Ciˆencia e a Tecnologia, I.P.) financial support through national funding and by the ERDF through the Operational Programme on “Competitiveness and Internationalization - COMPETE 2020” under the PT2020 Partnership Agreement.info:eu-repo/semantics/publishedVersionWileyUniversidade do MinhoFalcão, M. I.Miranda, FernandoSeverino, RicardoSoares, M. J.20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/51931eng0170-421410.1002/mma.4623info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:05:53Zoai:repositorium.sdum.uminho.pt:1822/51931Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:56:27.575237Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Weierstrass method for quaternionic polynomial root-finding |
title |
Weierstrass method for quaternionic polynomial root-finding |
spellingShingle |
Weierstrass method for quaternionic polynomial root-finding Falcão, M. I. Quaternionic polynomials Root-finding methods Weierstrass algorithm Science & Technology |
title_short |
Weierstrass method for quaternionic polynomial root-finding |
title_full |
Weierstrass method for quaternionic polynomial root-finding |
title_fullStr |
Weierstrass method for quaternionic polynomial root-finding |
title_full_unstemmed |
Weierstrass method for quaternionic polynomial root-finding |
title_sort |
Weierstrass method for quaternionic polynomial root-finding |
author |
Falcão, M. I. |
author_facet |
Falcão, M. I. Miranda, Fernando Severino, Ricardo Soares, M. J. |
author_role |
author |
author2 |
Miranda, Fernando Severino, Ricardo Soares, M. J. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Falcão, M. I. Miranda, Fernando Severino, Ricardo Soares, M. J. |
dc.subject.por.fl_str_mv |
Quaternionic polynomials Root-finding methods Weierstrass algorithm Science & Technology |
topic |
Quaternionic polynomials Root-finding methods Weierstrass algorithm Science & Technology |
description |
Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas that motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper, we propose a Weierstrass-like method for finding simultaneously all the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/51931 |
url |
http://hdl.handle.net/1822/51931 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0170-4214 10.1002/mma.4623 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132351674974208 |