Weierstrass method for quaternionic polynomial root-finding

Detalhes bibliográficos
Autor(a) principal: Falcão, M. I.
Data de Publicação: 2018
Outros Autores: Miranda, Fernando, Severino, Ricardo, Soares, M. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/51931
Resumo: Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas that motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper, we propose a Weierstrass-like method for finding simultaneously all the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.
id RCAP_a55c5cbb43018e75791bb55eb0afeacb
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/51931
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Weierstrass method for quaternionic polynomial root-findingQuaternionic polynomialsRoot-finding methodsWeierstrass algorithmScience & TechnologyQuaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas that motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper, we propose a Weierstrass-like method for finding simultaneously all the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.Research at CMAT was financed by Portuguese Funds through FCT, within the Project UID/MAT/00013/2013. Research at NIPE was carried out within the funding with COMPETE reference number POCI-01-0145-FEDER-006683 (UID/ECO/03182/2013), with the FCT/MEC’s (Funda¸c˜ao para a Ciˆencia e a Tecnologia, I.P.) financial support through national funding and by the ERDF through the Operational Programme on “Competitiveness and Internationalization - COMPETE 2020” under the PT2020 Partnership Agreement.info:eu-repo/semantics/publishedVersionWileyUniversidade do MinhoFalcão, M. I.Miranda, FernandoSeverino, RicardoSoares, M. J.20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/51931eng0170-421410.1002/mma.4623info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:05:53Zoai:repositorium.sdum.uminho.pt:1822/51931Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:56:27.575237Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Weierstrass method for quaternionic polynomial root-finding
title Weierstrass method for quaternionic polynomial root-finding
spellingShingle Weierstrass method for quaternionic polynomial root-finding
Falcão, M. I.
Quaternionic polynomials
Root-finding methods
Weierstrass algorithm
Science & Technology
title_short Weierstrass method for quaternionic polynomial root-finding
title_full Weierstrass method for quaternionic polynomial root-finding
title_fullStr Weierstrass method for quaternionic polynomial root-finding
title_full_unstemmed Weierstrass method for quaternionic polynomial root-finding
title_sort Weierstrass method for quaternionic polynomial root-finding
author Falcão, M. I.
author_facet Falcão, M. I.
Miranda, Fernando
Severino, Ricardo
Soares, M. J.
author_role author
author2 Miranda, Fernando
Severino, Ricardo
Soares, M. J.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Falcão, M. I.
Miranda, Fernando
Severino, Ricardo
Soares, M. J.
dc.subject.por.fl_str_mv Quaternionic polynomials
Root-finding methods
Weierstrass algorithm
Science & Technology
topic Quaternionic polynomials
Root-finding methods
Weierstrass algorithm
Science & Technology
description Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas that motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper, we propose a Weierstrass-like method for finding simultaneously all the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/51931
url http://hdl.handle.net/1822/51931
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0170-4214
10.1002/mma.4623
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132351674974208