Development of eco-mortars with the incorporation of municipal solid wastes incineration ash
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/40232 |
Resumo: | The cement sector is the second largest contributor to anthropogenic CO2 emissions, and several efforts have been made to reduce its environmental impact. One alternative that has gained interest in recent years involves the use of municipal solid waste incineration (MSWI) bottom ash (BA) as clinker/cement replacement. This paper studies the application of MSWI BA in three different ways: (i) aggregate (0 to 100 v/v %), (ii) partial binder substitute (0 to 30 v/v %), and (iii) filler (5 v/v %). It stands out for its approach in characterizing seven distinct BA particle sizes and for the development and analysis of eco-cement mortars with only mechanically pre-treated BA. Hardened state properties showed that the use of BA as aggregate leads to deterioration and efflorescence formation on the surface of the mortars, making this application unfeasible. The replacement of 15 v/v % of OPC (Ordinary Portland Cement) by BA and the use of finer (<63 μm) BA as filler caused a decrease in the compressive strength of the mortar, from 15.8 to 9.3 and 11.0, respectively. However, these materials are suitable for use in walls where the minimum required mechanical resistance is 5 MPa. Furthermore, these mortars demonstrated resilience against freeze-thaw cycles and even exhibited increased compressive strength after 25 cycles. Thus, this work showed that MSWI BA can be used as an OPC substitute (up to 15 v/v %) and as a filler, promoting circular economy principles and reducing CO2 emissions related to the construction industry. |
id |
RCAP_a5a93d6f65475be93ab8e08ba7859f46 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/40232 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development of eco-mortars with the incorporation of municipal solid wastes incineration ashBottom ashesIndustrial wasteCircular economySustainable construction materialsFreeze–thaw resistance testsThe cement sector is the second largest contributor to anthropogenic CO2 emissions, and several efforts have been made to reduce its environmental impact. One alternative that has gained interest in recent years involves the use of municipal solid waste incineration (MSWI) bottom ash (BA) as clinker/cement replacement. This paper studies the application of MSWI BA in three different ways: (i) aggregate (0 to 100 v/v %), (ii) partial binder substitute (0 to 30 v/v %), and (iii) filler (5 v/v %). It stands out for its approach in characterizing seven distinct BA particle sizes and for the development and analysis of eco-cement mortars with only mechanically pre-treated BA. Hardened state properties showed that the use of BA as aggregate leads to deterioration and efflorescence formation on the surface of the mortars, making this application unfeasible. The replacement of 15 v/v % of OPC (Ordinary Portland Cement) by BA and the use of finer (<63 μm) BA as filler caused a decrease in the compressive strength of the mortar, from 15.8 to 9.3 and 11.0, respectively. However, these materials are suitable for use in walls where the minimum required mechanical resistance is 5 MPa. Furthermore, these mortars demonstrated resilience against freeze-thaw cycles and even exhibited increased compressive strength after 25 cycles. Thus, this work showed that MSWI BA can be used as an OPC substitute (up to 15 v/v %) and as a filler, promoting circular economy principles and reducing CO2 emissions related to the construction industry.MDPI2024-01-18T17:57:56Z2023-10-28T00:00:00Z2023-10-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40232eng1996-194410.3390/ma16216933Vilarinho, Inês S.Guimarães, GonçaloLabrincha, João A.Seabra, Maria P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:36Zoai:ria.ua.pt:10773/40232Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:15.236967Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development of eco-mortars with the incorporation of municipal solid wastes incineration ash |
title |
Development of eco-mortars with the incorporation of municipal solid wastes incineration ash |
spellingShingle |
Development of eco-mortars with the incorporation of municipal solid wastes incineration ash Vilarinho, Inês S. Bottom ashes Industrial waste Circular economy Sustainable construction materials Freeze–thaw resistance tests |
title_short |
Development of eco-mortars with the incorporation of municipal solid wastes incineration ash |
title_full |
Development of eco-mortars with the incorporation of municipal solid wastes incineration ash |
title_fullStr |
Development of eco-mortars with the incorporation of municipal solid wastes incineration ash |
title_full_unstemmed |
Development of eco-mortars with the incorporation of municipal solid wastes incineration ash |
title_sort |
Development of eco-mortars with the incorporation of municipal solid wastes incineration ash |
author |
Vilarinho, Inês S. |
author_facet |
Vilarinho, Inês S. Guimarães, Gonçalo Labrincha, João A. Seabra, Maria P. |
author_role |
author |
author2 |
Guimarães, Gonçalo Labrincha, João A. Seabra, Maria P. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Vilarinho, Inês S. Guimarães, Gonçalo Labrincha, João A. Seabra, Maria P. |
dc.subject.por.fl_str_mv |
Bottom ashes Industrial waste Circular economy Sustainable construction materials Freeze–thaw resistance tests |
topic |
Bottom ashes Industrial waste Circular economy Sustainable construction materials Freeze–thaw resistance tests |
description |
The cement sector is the second largest contributor to anthropogenic CO2 emissions, and several efforts have been made to reduce its environmental impact. One alternative that has gained interest in recent years involves the use of municipal solid waste incineration (MSWI) bottom ash (BA) as clinker/cement replacement. This paper studies the application of MSWI BA in three different ways: (i) aggregate (0 to 100 v/v %), (ii) partial binder substitute (0 to 30 v/v %), and (iii) filler (5 v/v %). It stands out for its approach in characterizing seven distinct BA particle sizes and for the development and analysis of eco-cement mortars with only mechanically pre-treated BA. Hardened state properties showed that the use of BA as aggregate leads to deterioration and efflorescence formation on the surface of the mortars, making this application unfeasible. The replacement of 15 v/v % of OPC (Ordinary Portland Cement) by BA and the use of finer (<63 μm) BA as filler caused a decrease in the compressive strength of the mortar, from 15.8 to 9.3 and 11.0, respectively. However, these materials are suitable for use in walls where the minimum required mechanical resistance is 5 MPa. Furthermore, these mortars demonstrated resilience against freeze-thaw cycles and even exhibited increased compressive strength after 25 cycles. Thus, this work showed that MSWI BA can be used as an OPC substitute (up to 15 v/v %) and as a filler, promoting circular economy principles and reducing CO2 emissions related to the construction industry. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-28T00:00:00Z 2023-10-28 2024-01-18T17:57:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/40232 |
url |
http://hdl.handle.net/10773/40232 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1996-1944 10.3390/ma16216933 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137752758878208 |