Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

Detalhes bibliográficos
Autor(a) principal: Sadeghi,J
Data de Publicação: 2014
Outros Autores: Latifi,H, José Luís Santos, Chenari,Z, Ziaee,F
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/7350
http://dx.doi.org/10.1063/1.4866334
Resumo: Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 x 10(-5) nm/psi at 1480 nm to 1.3 x 10(-3) nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from -3.4 x 10(-6) 1/psi to -1.3 x 10(- 6) 1/psi and from -5 x 10(-6) 1/psi to -1.8 x 10(-6) 1/psi, respectively, which were in a good accordance with each other. (C) 2014 AIP Publishing LLC.
id RCAP_a5b4fe342d873414cbaa8b73f50fd7be
oai_identifier_str oai:repositorio.inesctec.pt:123456789/7350
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole applicationPressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 x 10(-5) nm/psi at 1480 nm to 1.3 x 10(-3) nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from -3.4 x 10(-6) 1/psi to -1.3 x 10(- 6) 1/psi and from -5 x 10(-6) 1/psi to -1.8 x 10(-6) 1/psi, respectively, which were in a good accordance with each other. (C) 2014 AIP Publishing LLC.2018-01-25T11:28:49Z2014-01-01T00:00:00Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/7350http://dx.doi.org/10.1063/1.4866334engSadeghi,JLatifi,HJosé Luís SantosChenari,ZZiaee,Finfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:19Zoai:repositorio.inesctec.pt:123456789/7350Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:57.555474Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application
title Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application
spellingShingle Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application
Sadeghi,J
title_short Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application
title_full Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application
title_fullStr Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application
title_full_unstemmed Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application
title_sort Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application
author Sadeghi,J
author_facet Sadeghi,J
Latifi,H
José Luís Santos
Chenari,Z
Ziaee,F
author_role author
author2 Latifi,H
José Luís Santos
Chenari,Z
Ziaee,F
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Sadeghi,J
Latifi,H
José Luís Santos
Chenari,Z
Ziaee,F
description Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 x 10(-5) nm/psi at 1480 nm to 1.3 x 10(-3) nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from -3.4 x 10(-6) 1/psi to -1.3 x 10(- 6) 1/psi and from -5 x 10(-6) 1/psi to -1.8 x 10(-6) 1/psi, respectively, which were in a good accordance with each other. (C) 2014 AIP Publishing LLC.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01T00:00:00Z
2014
2018-01-25T11:28:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/7350
http://dx.doi.org/10.1063/1.4866334
url http://repositorio.inesctec.pt/handle/123456789/7350
http://dx.doi.org/10.1063/1.4866334
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131604804698112