CMOS Design for Indoor Photovoltaic Harvesting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/137342 |
Resumo: | "The present work aims to study a photovoltaic (PV) energy conversion system for indoor applications. This system consists of a PV cell, a DC-DC switched capacitor (SC) and an energy storage element. It is common to PV harvesting systems to use maximum power point tracking (MPPT) methods in order to extract the maximum power from the PV cell. However, these methods do not guarantee the maximum power is delivered to the load, being lost in the DC-DC SC. It is important to also guarantee the maximum power point is transferred. Thus this system aims to guarantee the maximum power is being harvested but also the maximum power is being storage to the storage element. The power conditioning stage consist of cross coupled voltage doubler charge pump and a star up circuit between the PV cell and the switched capacitor. This stage guarantees the charge pump only operates when the energy available is sufficient for its correct operation. The output connects to a supercapactior where the energy is stored. Several simulations were made to analyse the performance of the system." |
id |
RCAP_a6d3c2cd380c0ae48673916c8905982f |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/137342 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
CMOS Design for Indoor Photovoltaic HarvestingEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineering"The present work aims to study a photovoltaic (PV) energy conversion system for indoor applications. This system consists of a PV cell, a DC-DC switched capacitor (SC) and an energy storage element. It is common to PV harvesting systems to use maximum power point tracking (MPPT) methods in order to extract the maximum power from the PV cell. However, these methods do not guarantee the maximum power is delivered to the load, being lost in the DC-DC SC. It is important to also guarantee the maximum power point is transferred. Thus this system aims to guarantee the maximum power is being harvested but also the maximum power is being storage to the storage element. The power conditioning stage consist of cross coupled voltage doubler charge pump and a star up circuit between the PV cell and the switched capacitor. This stage guarantees the charge pump only operates when the energy available is sufficient for its correct operation. The output connects to a supercapactior where the energy is stored. Several simulations were made to analyse the performance of the system."2021-10-062021-10-06T00:00:00Z2024-10-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/137342TID:202817202engAna Luísa Cardoso Macedoinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:28:09Zoai:repositorio-aberto.up.pt:10216/137342Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:24:21.422457Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
CMOS Design for Indoor Photovoltaic Harvesting |
title |
CMOS Design for Indoor Photovoltaic Harvesting |
spellingShingle |
CMOS Design for Indoor Photovoltaic Harvesting Ana Luísa Cardoso Macedo Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
title_short |
CMOS Design for Indoor Photovoltaic Harvesting |
title_full |
CMOS Design for Indoor Photovoltaic Harvesting |
title_fullStr |
CMOS Design for Indoor Photovoltaic Harvesting |
title_full_unstemmed |
CMOS Design for Indoor Photovoltaic Harvesting |
title_sort |
CMOS Design for Indoor Photovoltaic Harvesting |
author |
Ana Luísa Cardoso Macedo |
author_facet |
Ana Luísa Cardoso Macedo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ana Luísa Cardoso Macedo |
dc.subject.por.fl_str_mv |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
topic |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
description |
"The present work aims to study a photovoltaic (PV) energy conversion system for indoor applications. This system consists of a PV cell, a DC-DC switched capacitor (SC) and an energy storage element. It is common to PV harvesting systems to use maximum power point tracking (MPPT) methods in order to extract the maximum power from the PV cell. However, these methods do not guarantee the maximum power is delivered to the load, being lost in the DC-DC SC. It is important to also guarantee the maximum power point is transferred. Thus this system aims to guarantee the maximum power is being harvested but also the maximum power is being storage to the storage element. The power conditioning stage consist of cross coupled voltage doubler charge pump and a star up circuit between the PV cell and the switched capacitor. This stage guarantees the charge pump only operates when the energy available is sufficient for its correct operation. The output connects to a supercapactior where the energy is stored. Several simulations were made to analyse the performance of the system." |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-06 2021-10-06T00:00:00Z 2024-10-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/137342 TID:202817202 |
url |
https://hdl.handle.net/10216/137342 |
identifier_str_mv |
TID:202817202 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136158568939520 |