Multi-aspect-streaming tensor analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/5311 http://dx.doi.org/10.1016/j.knosys.2015.07.013 |
Resumo: | Tensor analysis is a powerful tool for multiway problems in data mining, signal processing, pattern recognition and many other areas. Nowadays, the most important challenges in tensor analysis are efficiency and adaptability. Still, the majority of techniques are not scalable or not applicable in streaming settings. One of the promising frameworks that simultaneously addresses these two issues is Incremental Tensor Analysis (ITA) that includes three variants called Dynamic Tensor Analysis (DTA), Streaming Tensor Analysis (STA) and Window-based Tensor Analysis (WTA). However, ITA restricts the tensor's growth only in time, which is a huge constraint in scalability and adaptability of other modes. We propose a new approach called multi-aspect-streaming tensor analysis (MASTA) that relaxes this constraint and allows the tensor to concurrently evolve through all modes. The new approach, which is developed for analysis-only purposes, instead of relying on expensive linear algebra techniques is founded on the histogram approximation concept. This consequently brought simplicity, adaptability, efficiency and flexibility to the tensor analysis task. The empirical evaluation on various data sets from several domains reveals that MASTA is a potential technique with a competitive value against ITA algorithms. |
id |
RCAP_a7305d47eed80932b1850bf5482d4bb2 |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/5311 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multi-aspect-streaming tensor analysisTensor analysis is a powerful tool for multiway problems in data mining, signal processing, pattern recognition and many other areas. Nowadays, the most important challenges in tensor analysis are efficiency and adaptability. Still, the majority of techniques are not scalable or not applicable in streaming settings. One of the promising frameworks that simultaneously addresses these two issues is Incremental Tensor Analysis (ITA) that includes three variants called Dynamic Tensor Analysis (DTA), Streaming Tensor Analysis (STA) and Window-based Tensor Analysis (WTA). However, ITA restricts the tensor's growth only in time, which is a huge constraint in scalability and adaptability of other modes. We propose a new approach called multi-aspect-streaming tensor analysis (MASTA) that relaxes this constraint and allows the tensor to concurrently evolve through all modes. The new approach, which is developed for analysis-only purposes, instead of relying on expensive linear algebra techniques is founded on the histogram approximation concept. This consequently brought simplicity, adaptability, efficiency and flexibility to the tensor analysis task. The empirical evaluation on various data sets from several domains reveals that MASTA is a potential technique with a competitive value against ITA algorithms.2018-01-03T10:35:11Z2015-01-01T00:00:00Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5311http://dx.doi.org/10.1016/j.knosys.2015.07.013engHadi Fanaee TorkJoão Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:08Zoai:repositorio.inesctec.pt:123456789/5311Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:43.913476Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multi-aspect-streaming tensor analysis |
title |
Multi-aspect-streaming tensor analysis |
spellingShingle |
Multi-aspect-streaming tensor analysis Hadi Fanaee Tork |
title_short |
Multi-aspect-streaming tensor analysis |
title_full |
Multi-aspect-streaming tensor analysis |
title_fullStr |
Multi-aspect-streaming tensor analysis |
title_full_unstemmed |
Multi-aspect-streaming tensor analysis |
title_sort |
Multi-aspect-streaming tensor analysis |
author |
Hadi Fanaee Tork |
author_facet |
Hadi Fanaee Tork João Gama |
author_role |
author |
author2 |
João Gama |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Hadi Fanaee Tork João Gama |
description |
Tensor analysis is a powerful tool for multiway problems in data mining, signal processing, pattern recognition and many other areas. Nowadays, the most important challenges in tensor analysis are efficiency and adaptability. Still, the majority of techniques are not scalable or not applicable in streaming settings. One of the promising frameworks that simultaneously addresses these two issues is Incremental Tensor Analysis (ITA) that includes three variants called Dynamic Tensor Analysis (DTA), Streaming Tensor Analysis (STA) and Window-based Tensor Analysis (WTA). However, ITA restricts the tensor's growth only in time, which is a huge constraint in scalability and adaptability of other modes. We propose a new approach called multi-aspect-streaming tensor analysis (MASTA) that relaxes this constraint and allows the tensor to concurrently evolve through all modes. The new approach, which is developed for analysis-only purposes, instead of relying on expensive linear algebra techniques is founded on the histogram approximation concept. This consequently brought simplicity, adaptability, efficiency and flexibility to the tensor analysis task. The empirical evaluation on various data sets from several domains reveals that MASTA is a potential technique with a competitive value against ITA algorithms. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01T00:00:00Z 2015 2018-01-03T10:35:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/5311 http://dx.doi.org/10.1016/j.knosys.2015.07.013 |
url |
http://repositorio.inesctec.pt/handle/123456789/5311 http://dx.doi.org/10.1016/j.knosys.2015.07.013 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131602752634880 |