Feynman integrals for non-smooth and rapidly growing potentials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/1679 |
Resumo: | The Feynman integral for the Schrödinger propagator is constructed as a generalized function of white noise, for a linear space of potentials spanned by finite signed measures of bounded support and Laplace transforms of such measures, i.e., locally singular as well as rapidly growing at infinity. Remarkably, all these propagators admit a perturbation expansion. |
id |
RCAP_a7318518e6ae26997bd7a9bdf2b88c21 |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/1679 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Feynman integrals for non-smooth and rapidly growing potentialsFeynman integralsWhite noise analysisThe Feynman integral for the Schrödinger propagator is constructed as a generalized function of white noise, for a linear space of potentials spanned by finite signed measures of bounded support and Laplace transforms of such measures, i.e., locally singular as well as rapidly growing at infinity. Remarkably, all these propagators admit a perturbation expansion.American Institute of PhysicsRepositório AbertoFaria, Margarida deOliveira, Maria JoãoStreit, Ludwig2010-11-23T17:07:30Z20052005-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/1679engFaria, Margarida de; Oliveira Maria João; Streit, Ludwig - Feynman integrals for non-smooth and rapidly growing potentials. "Journal of Mathematical Physics" [Em linha]. ISSN 0022-2488. Vol. 46, nº 6 (May 2005), p. 1-140022-2488Art. No. 063505info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:14:26Zoai:repositorioaberto.uab.pt:10400.2/1679Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:43:24.226784Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Feynman integrals for non-smooth and rapidly growing potentials |
title |
Feynman integrals for non-smooth and rapidly growing potentials |
spellingShingle |
Feynman integrals for non-smooth and rapidly growing potentials Faria, Margarida de Feynman integrals White noise analysis |
title_short |
Feynman integrals for non-smooth and rapidly growing potentials |
title_full |
Feynman integrals for non-smooth and rapidly growing potentials |
title_fullStr |
Feynman integrals for non-smooth and rapidly growing potentials |
title_full_unstemmed |
Feynman integrals for non-smooth and rapidly growing potentials |
title_sort |
Feynman integrals for non-smooth and rapidly growing potentials |
author |
Faria, Margarida de |
author_facet |
Faria, Margarida de Oliveira, Maria João Streit, Ludwig |
author_role |
author |
author2 |
Oliveira, Maria João Streit, Ludwig |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Faria, Margarida de Oliveira, Maria João Streit, Ludwig |
dc.subject.por.fl_str_mv |
Feynman integrals White noise analysis |
topic |
Feynman integrals White noise analysis |
description |
The Feynman integral for the Schrödinger propagator is constructed as a generalized function of white noise, for a linear space of potentials spanned by finite signed measures of bounded support and Laplace transforms of such measures, i.e., locally singular as well as rapidly growing at infinity. Remarkably, all these propagators admit a perturbation expansion. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 2005-01-01T00:00:00Z 2010-11-23T17:07:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/1679 |
url |
http://hdl.handle.net/10400.2/1679 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Faria, Margarida de; Oliveira Maria João; Streit, Ludwig - Feynman integrals for non-smooth and rapidly growing potentials. "Journal of Mathematical Physics" [Em linha]. ISSN 0022-2488. Vol. 46, nº 6 (May 2005), p. 1-14 0022-2488 Art. No. 063505 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135000667357184 |