GAN Hyperparameters search through Genetic Algorithm

Detalhes bibliográficos
Autor(a) principal: Tammaro, Umberto
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/135552
Resumo: Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science
id RCAP_a733e9663a434009c4fe026556dfcde5
oai_identifier_str oai:run.unl.pt:10362/135552
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling GAN Hyperparameters search through Genetic AlgorithmArtificial neural networksGenerative Adversarial NetworksDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceRecent developments in Deep Learning are remarkable when it comes to generative models. The main reason for such progress is because of Generative Adversarial Networks (GANs) [1]. Introduced in a paper by Ian Goodfellow in 2014 GANs are machine learning models that are made of two neural networks: a Generator and a Discriminator. These two compete amongst each other to generate new, synthetic instances of data that resemble the real one. Despite their great potential, there are present challenges in their training, which include training instability, mode collapse, and vanishing gradient. A lot of research has been done on how to overcome these challenges, however, there was no significant proof found on whether modern techniques consistently outperform vanilla GAN. The performances of GANs are also highly dependent on the dataset they are trained on. One of the main challenges is related to the search for hyperparameters. In this thesis, we try to overcome this challenge by applying an evolutionary algorithm to search for the best hyperparameters for a WGAN. We use Kullback-Leibler divergence to calculate the fitness of the individuals, and in the end, we select the best set of parameters generated by the evolutionary algorithm. The parameters of the best-selected individuals are maintained throughout the generations. We compare our approach with the standard hyperparameters given by the state-of-art.Castelli, MauroRUNTammaro, Umberto2022-03-30T17:11:03Z2022-03-072022-03-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/135552TID:202979792enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:13:55Zoai:run.unl.pt:10362/135552Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:48:27.023693Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv GAN Hyperparameters search through Genetic Algorithm
title GAN Hyperparameters search through Genetic Algorithm
spellingShingle GAN Hyperparameters search through Genetic Algorithm
Tammaro, Umberto
Artificial neural networks
Generative Adversarial Networks
title_short GAN Hyperparameters search through Genetic Algorithm
title_full GAN Hyperparameters search through Genetic Algorithm
title_fullStr GAN Hyperparameters search through Genetic Algorithm
title_full_unstemmed GAN Hyperparameters search through Genetic Algorithm
title_sort GAN Hyperparameters search through Genetic Algorithm
author Tammaro, Umberto
author_facet Tammaro, Umberto
author_role author
dc.contributor.none.fl_str_mv Castelli, Mauro
RUN
dc.contributor.author.fl_str_mv Tammaro, Umberto
dc.subject.por.fl_str_mv Artificial neural networks
Generative Adversarial Networks
topic Artificial neural networks
Generative Adversarial Networks
description Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science
publishDate 2022
dc.date.none.fl_str_mv 2022-03-30T17:11:03Z
2022-03-07
2022-03-07T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/135552
TID:202979792
url http://hdl.handle.net/10362/135552
identifier_str_mv TID:202979792
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138085548589056