Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species

Detalhes bibliográficos
Autor(a) principal: Rosário, Luís Filipe Sobral do
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/138808
Resumo: In this dissertation we approach the problem of performing bioacoustic classification of four different small dolphin species by using their vocalizations. Cetaceans, (the taxonomic order which dolphins are part of) live in complex social societies and have been known to possess remarkable cognitive skills, being praised to have great intelligence capabilities. Cetaceans are most well known for their intricate communication patterns, which serve different purposes from mating advertisement to individual recognition. The analysis of these vocalizations, due to their intricacy has been for decades a laborious manual task, which takes a long time for specialists to perform. Our interest is in aiding researchers by developing machine learning methods capable of the analysis and classification of great volumes of cetacean recordings. We propose a four stage method which is capable of extracting relevant features from dolphin vocalizations making it possible to identify the corresponding species with great accuracy (achieving model accuracies above 95%). Although the resulting model is tai- lored to the classification of cetacean species indigenous to the Madeira Archipelago, which is expected to help the Madeira Whale Museum’s conservation efforts of these animals, it can be the foundation for future classifications of other cetacean species.
id RCAP_a7842c29b2a5ab41f4372868c77bd56e
oai_identifier_str oai:run.unl.pt:10362/138808
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin speciesBioacoustic ClassificationCetaceansMarine bioacoustic signal processingSupervised classificationDenoisingConvolution neural networksDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIn this dissertation we approach the problem of performing bioacoustic classification of four different small dolphin species by using their vocalizations. Cetaceans, (the taxonomic order which dolphins are part of) live in complex social societies and have been known to possess remarkable cognitive skills, being praised to have great intelligence capabilities. Cetaceans are most well known for their intricate communication patterns, which serve different purposes from mating advertisement to individual recognition. The analysis of these vocalizations, due to their intricacy has been for decades a laborious manual task, which takes a long time for specialists to perform. Our interest is in aiding researchers by developing machine learning methods capable of the analysis and classification of great volumes of cetacean recordings. We propose a four stage method which is capable of extracting relevant features from dolphin vocalizations making it possible to identify the corresponding species with great accuracy (achieving model accuracies above 95%). Although the resulting model is tai- lored to the classification of cetacean species indigenous to the Madeira Archipelago, which is expected to help the Madeira Whale Museum’s conservation efforts of these animals, it can be the foundation for future classifications of other cetacean species.Esta dissertação aborda a temática da classificação bioacústica de quatro espécies de golfinhos com base nas suas vocalizações. Os cetáceos (infraordem taxonómica os golfinhos se encontram) vivem em complexos aglomerados sociais e demonstram elevadas capacidades cognitivas, sendo considerados animais altamente inteligentes. Estas espécies são especialmente conhecidas pelos seus intrincados chamamentos que, podem servir diversos propósitos tais como para acasa- lamento e identificação. A análise destas vocalizações, devido à sua complexidade, foi desde sempre uma tarefa manual laboriosa que demora grandes períodos de tempo a ser realizada. De modo a facilitar este processo, é do nosso interesse a produção de um modelo de aprendizagem automática, capaz de analisar e classificar grandes volumes de gravações de cetáceos. Propomos a produção de um método a quatro fases capaz de obter features relevantes a partir de vocalizações de golfinhos, tornando assim possível a sua distinção com uma grande precisão (chegando-se a alcançar precisões médias acima de 95%). Independente- mente de o modelo resultante estar otimizado para a classificação de espécies indígenas do arquipélago da Madeira, algo que poderá ajudar os esforços de conservação destas espécies levados a cabo pelo Museu da Baleia da Madeira, também poderá servir como base para outros trabalhos futuros na área da classificação bioacústica.Silva, JoaquimCavaco, SofiaRUNRosário, Luís Filipe Sobral do2022-05-27T16:50:34Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/138808enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:16:12Zoai:run.unl.pt:10362/138808Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:49:13.984044Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species
title Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species
spellingShingle Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species
Rosário, Luís Filipe Sobral do
Bioacoustic Classification
Cetaceans
Marine bioacoustic signal processing
Supervised classification
Denoising
Convolution neural networks
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species
title_full Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species
title_fullStr Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species
title_full_unstemmed Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species
title_sort Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species
author Rosário, Luís Filipe Sobral do
author_facet Rosário, Luís Filipe Sobral do
author_role author
dc.contributor.none.fl_str_mv Silva, Joaquim
Cavaco, Sofia
RUN
dc.contributor.author.fl_str_mv Rosário, Luís Filipe Sobral do
dc.subject.por.fl_str_mv Bioacoustic Classification
Cetaceans
Marine bioacoustic signal processing
Supervised classification
Denoising
Convolution neural networks
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Bioacoustic Classification
Cetaceans
Marine bioacoustic signal processing
Supervised classification
Denoising
Convolution neural networks
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description In this dissertation we approach the problem of performing bioacoustic classification of four different small dolphin species by using their vocalizations. Cetaceans, (the taxonomic order which dolphins are part of) live in complex social societies and have been known to possess remarkable cognitive skills, being praised to have great intelligence capabilities. Cetaceans are most well known for their intricate communication patterns, which serve different purposes from mating advertisement to individual recognition. The analysis of these vocalizations, due to their intricacy has been for decades a laborious manual task, which takes a long time for specialists to perform. Our interest is in aiding researchers by developing machine learning methods capable of the analysis and classification of great volumes of cetacean recordings. We propose a four stage method which is capable of extracting relevant features from dolphin vocalizations making it possible to identify the corresponding species with great accuracy (achieving model accuracies above 95%). Although the resulting model is tai- lored to the classification of cetacean species indigenous to the Madeira Archipelago, which is expected to help the Madeira Whale Museum’s conservation efforts of these animals, it can be the foundation for future classifications of other cetacean species.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-27T16:50:34Z
2022-02
2022-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/138808
url http://hdl.handle.net/10362/138808
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138091559026688