Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/138808 |
Resumo: | In this dissertation we approach the problem of performing bioacoustic classification of four different small dolphin species by using their vocalizations. Cetaceans, (the taxonomic order which dolphins are part of) live in complex social societies and have been known to possess remarkable cognitive skills, being praised to have great intelligence capabilities. Cetaceans are most well known for their intricate communication patterns, which serve different purposes from mating advertisement to individual recognition. The analysis of these vocalizations, due to their intricacy has been for decades a laborious manual task, which takes a long time for specialists to perform. Our interest is in aiding researchers by developing machine learning methods capable of the analysis and classification of great volumes of cetacean recordings. We propose a four stage method which is capable of extracting relevant features from dolphin vocalizations making it possible to identify the corresponding species with great accuracy (achieving model accuracies above 95%). Although the resulting model is tai- lored to the classification of cetacean species indigenous to the Madeira Archipelago, which is expected to help the Madeira Whale Museum’s conservation efforts of these animals, it can be the foundation for future classifications of other cetacean species. |
id |
RCAP_a7842c29b2a5ab41f4372868c77bd56e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/138808 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin speciesBioacoustic ClassificationCetaceansMarine bioacoustic signal processingSupervised classificationDenoisingConvolution neural networksDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIn this dissertation we approach the problem of performing bioacoustic classification of four different small dolphin species by using their vocalizations. Cetaceans, (the taxonomic order which dolphins are part of) live in complex social societies and have been known to possess remarkable cognitive skills, being praised to have great intelligence capabilities. Cetaceans are most well known for their intricate communication patterns, which serve different purposes from mating advertisement to individual recognition. The analysis of these vocalizations, due to their intricacy has been for decades a laborious manual task, which takes a long time for specialists to perform. Our interest is in aiding researchers by developing machine learning methods capable of the analysis and classification of great volumes of cetacean recordings. We propose a four stage method which is capable of extracting relevant features from dolphin vocalizations making it possible to identify the corresponding species with great accuracy (achieving model accuracies above 95%). Although the resulting model is tai- lored to the classification of cetacean species indigenous to the Madeira Archipelago, which is expected to help the Madeira Whale Museum’s conservation efforts of these animals, it can be the foundation for future classifications of other cetacean species.Esta dissertação aborda a temática da classificação bioacústica de quatro espécies de golfinhos com base nas suas vocalizações. Os cetáceos (infraordem taxonómica os golfinhos se encontram) vivem em complexos aglomerados sociais e demonstram elevadas capacidades cognitivas, sendo considerados animais altamente inteligentes. Estas espécies são especialmente conhecidas pelos seus intrincados chamamentos que, podem servir diversos propósitos tais como para acasa- lamento e identificação. A análise destas vocalizações, devido à sua complexidade, foi desde sempre uma tarefa manual laboriosa que demora grandes períodos de tempo a ser realizada. De modo a facilitar este processo, é do nosso interesse a produção de um modelo de aprendizagem automática, capaz de analisar e classificar grandes volumes de gravações de cetáceos. Propomos a produção de um método a quatro fases capaz de obter features relevantes a partir de vocalizações de golfinhos, tornando assim possível a sua distinção com uma grande precisão (chegando-se a alcançar precisões médias acima de 95%). Independente- mente de o modelo resultante estar otimizado para a classificação de espécies indígenas do arquipélago da Madeira, algo que poderá ajudar os esforços de conservação destas espécies levados a cabo pelo Museu da Baleia da Madeira, também poderá servir como base para outros trabalhos futuros na área da classificação bioacústica.Silva, JoaquimCavaco, SofiaRUNRosário, Luís Filipe Sobral do2022-05-27T16:50:34Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/138808enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:16:12Zoai:run.unl.pt:10362/138808Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:49:13.984044Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species |
title |
Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species |
spellingShingle |
Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species Rosário, Luís Filipe Sobral do Bioacoustic Classification Cetaceans Marine bioacoustic signal processing Supervised classification Denoising Convolution neural networks Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species |
title_full |
Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species |
title_fullStr |
Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species |
title_full_unstemmed |
Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species |
title_sort |
Vocal Signature Feature Set for the Distinction of Macaronesian Dolphin species |
author |
Rosário, Luís Filipe Sobral do |
author_facet |
Rosário, Luís Filipe Sobral do |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Joaquim Cavaco, Sofia RUN |
dc.contributor.author.fl_str_mv |
Rosário, Luís Filipe Sobral do |
dc.subject.por.fl_str_mv |
Bioacoustic Classification Cetaceans Marine bioacoustic signal processing Supervised classification Denoising Convolution neural networks Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Bioacoustic Classification Cetaceans Marine bioacoustic signal processing Supervised classification Denoising Convolution neural networks Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
In this dissertation we approach the problem of performing bioacoustic classification of four different small dolphin species by using their vocalizations. Cetaceans, (the taxonomic order which dolphins are part of) live in complex social societies and have been known to possess remarkable cognitive skills, being praised to have great intelligence capabilities. Cetaceans are most well known for their intricate communication patterns, which serve different purposes from mating advertisement to individual recognition. The analysis of these vocalizations, due to their intricacy has been for decades a laborious manual task, which takes a long time for specialists to perform. Our interest is in aiding researchers by developing machine learning methods capable of the analysis and classification of great volumes of cetacean recordings. We propose a four stage method which is capable of extracting relevant features from dolphin vocalizations making it possible to identify the corresponding species with great accuracy (achieving model accuracies above 95%). Although the resulting model is tai- lored to the classification of cetacean species indigenous to the Madeira Archipelago, which is expected to help the Madeira Whale Museum’s conservation efforts of these animals, it can be the foundation for future classifications of other cetacean species. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-27T16:50:34Z 2022-02 2022-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/138808 |
url |
http://hdl.handle.net/10362/138808 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138091559026688 |