Methods for estimating the upcrossings index: improvements and comparison

Detalhes bibliográficos
Autor(a) principal: Ana Paula Martins
Data de Publicação: 2017
Outros Autores: Sebastião, J.R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.11/6700
Resumo: The upcrossings index 0≤η≤1, as a measure of the degree of local dependence in the upcrossings of a high level by a stationary process, plays, together with the extremal index θ, an important role in extreme events modelling. For stationary processes, verifying a long range dependence condition, upcrossings of high thresholds in different blocks can be assumed asymptotically independent and therefore blocks estimators for the upcrossings index can be easily constructed using disjoint blocks. In this paper we focus on the estimation of the upcrossings index via the blocks method and properties such as consistency and asymptotic normality are studied. Besides this new estimation approach for this parameter, we also enlarge its family of runs estimators and improve estimation within this class by providing an empirical way of checking local dependence conditions that control the clustering of upcrossings. We compare the performance of a range of different estimators for η and illustrate the methods using simulated data and financial data.
id RCAP_a7a13abcd245ff6156b6f706c19c8b7e
oai_identifier_str oai:repositorio.ipcb.pt:10400.11/6700
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Methods for estimating the upcrossings index: improvements and comparisonUpcrossings indexBlocks estimatorsRuns estimatorsDependence conditionsConsistency and asymptotic normalityThe upcrossings index 0≤η≤1, as a measure of the degree of local dependence in the upcrossings of a high level by a stationary process, plays, together with the extremal index θ, an important role in extreme events modelling. For stationary processes, verifying a long range dependence condition, upcrossings of high thresholds in different blocks can be assumed asymptotically independent and therefore blocks estimators for the upcrossings index can be easily constructed using disjoint blocks. In this paper we focus on the estimation of the upcrossings index via the blocks method and properties such as consistency and asymptotic normality are studied. Besides this new estimation approach for this parameter, we also enlarge its family of runs estimators and improve estimation within this class by providing an empirical way of checking local dependence conditions that control the clustering of upcrossings. We compare the performance of a range of different estimators for η and illustrate the methods using simulated data and financial data.Repositório Científico do Instituto Politécnico de Castelo BrancoAna Paula MartinsSebastião, J.R.2019-10-11T13:40:32Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.11/6700eng10.1007/s00362-017-0876-xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-01-16T11:46:49Zoai:repositorio.ipcb.pt:10400.11/6700Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:37:18.744920Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Methods for estimating the upcrossings index: improvements and comparison
title Methods for estimating the upcrossings index: improvements and comparison
spellingShingle Methods for estimating the upcrossings index: improvements and comparison
Ana Paula Martins
Upcrossings index
Blocks estimators
Runs estimators
Dependence conditions
Consistency and asymptotic normality
title_short Methods for estimating the upcrossings index: improvements and comparison
title_full Methods for estimating the upcrossings index: improvements and comparison
title_fullStr Methods for estimating the upcrossings index: improvements and comparison
title_full_unstemmed Methods for estimating the upcrossings index: improvements and comparison
title_sort Methods for estimating the upcrossings index: improvements and comparison
author Ana Paula Martins
author_facet Ana Paula Martins
Sebastião, J.R.
author_role author
author2 Sebastião, J.R.
author2_role author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico de Castelo Branco
dc.contributor.author.fl_str_mv Ana Paula Martins
Sebastião, J.R.
dc.subject.por.fl_str_mv Upcrossings index
Blocks estimators
Runs estimators
Dependence conditions
Consistency and asymptotic normality
topic Upcrossings index
Blocks estimators
Runs estimators
Dependence conditions
Consistency and asymptotic normality
description The upcrossings index 0≤η≤1, as a measure of the degree of local dependence in the upcrossings of a high level by a stationary process, plays, together with the extremal index θ, an important role in extreme events modelling. For stationary processes, verifying a long range dependence condition, upcrossings of high thresholds in different blocks can be assumed asymptotically independent and therefore blocks estimators for the upcrossings index can be easily constructed using disjoint blocks. In this paper we focus on the estimation of the upcrossings index via the blocks method and properties such as consistency and asymptotic normality are studied. Besides this new estimation approach for this parameter, we also enlarge its family of runs estimators and improve estimation within this class by providing an empirical way of checking local dependence conditions that control the clustering of upcrossings. We compare the performance of a range of different estimators for η and illustrate the methods using simulated data and financial data.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
2019-10-11T13:40:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.11/6700
url http://hdl.handle.net/10400.11/6700
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/s00362-017-0876-x
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130834895110144