Linear and Non-linear time series analysis: forecasting financial markets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/1375 |
Resumo: | Time series analyses in financial area have been attract some special attention in the recent years. The stock markets are examples of systems with a complex behaviour and, sometimes, forecasting a financial time series can be a hard task. In this thesis we compare linear against non-linear models, ARIMA and Artificial Neural Networks. Using the log returns of nine countries we tried to demonstrate that neural networks can be used to uncover the non-linearity that exists in the financial field. First we followed a traditional approach by analysing the characteristics of the nine stock series and some typical features. We also produce a BDS test to investigate the nonlinearity, the results were as expected, and none of the markets exhibit a linear dependence. In consequence, traditional linear models may not produce reliable forecasts. However, this didn’t mean that neural networks can. We trained four types of neural networks for the nine stock markets and the results between them were quite similar varying most in their structure and suggesting that more studies about the hidden units between the input and output layer need to be done. This study stresses the importance of taking into account nonlinear effects that are quite evident in the stock market MODELS. |
id |
RCAP_a83d6f34cd7b85f80e4ed03d64bd64f5 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/1375 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Linear and Non-linear time series analysis: forecasting financial marketsStock returnsNeural networksARIMA modelsLinear time seriesNon linear time seriesRedes neuronaisRetornos bolsistasSéries temporais linearesSéries temporais não-linearesTime series analyses in financial area have been attract some special attention in the recent years. The stock markets are examples of systems with a complex behaviour and, sometimes, forecasting a financial time series can be a hard task. In this thesis we compare linear against non-linear models, ARIMA and Artificial Neural Networks. Using the log returns of nine countries we tried to demonstrate that neural networks can be used to uncover the non-linearity that exists in the financial field. First we followed a traditional approach by analysing the characteristics of the nine stock series and some typical features. We also produce a BDS test to investigate the nonlinearity, the results were as expected, and none of the markets exhibit a linear dependence. In consequence, traditional linear models may not produce reliable forecasts. However, this didn’t mean that neural networks can. We trained four types of neural networks for the nine stock markets and the results between them were quite similar varying most in their structure and suggesting that more studies about the hidden units between the input and output layer need to be done. This study stresses the importance of taking into account nonlinear effects that are quite evident in the stock market MODELS.A analise de séries temporais na area financeira tem atraido especial atenção nos últimos anos. Os mercados financeiros são exemplos de sistemas com um comportamento complexo e, por vezes, a previsão de séries temporais nesta àrea pode se tornar numa tarefa árdua. Nesta tese, iremos comparar os retornos logarítmicos proveninetes de nove mercados e monstrar que as redes neuronais podem ser utilizadas para detectar a não-linearidade existente nestes modelos. Primeiro, seguimos uma abordagem tradicional onde foram analisadas as características inerentes a cada um dos mercados. Executamos ainda o teste BDS para investigar a não-linearidade nas séries e, tal como esperado, os resultados confirmaram que nenhum dos mercados se apresenta como tendo um padrão linear. Dado este facto, os modelos lineares tradicionais poderão não produzir previsões fiáveis. Contudo, tal não quer dizer que as redes neuronais o façam. Foram treinadas quatro tipologias de redes para cada um dos nove mercados, sendo que, os resultados entre as mesmas foram bastante similares(variando em grande parte na estrutura que cada um das redes exibia) e, sugerindo que mais estudos devem ser feitos de modo a analisar o peso que as camadas ocultas possuem entre os neurónios de entrada e os de saída. Este estudo, enfatisa a importancia de se ter em conta que os efeitos não lineares devem ser estudados com certa significância nos mercados financeiros.2009-03-06T12:42:38Z2008-01-01T00:00:00Z20082008-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/1375engBarão, Sandra Maria Mestreinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:54:01Zoai:repositorio.iscte-iul.pt:10071/1375Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:27:09.109436Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Linear and Non-linear time series analysis: forecasting financial markets |
title |
Linear and Non-linear time series analysis: forecasting financial markets |
spellingShingle |
Linear and Non-linear time series analysis: forecasting financial markets Barão, Sandra Maria Mestre Stock returns Neural networks ARIMA models Linear time series Non linear time series Redes neuronais Retornos bolsistas Séries temporais lineares Séries temporais não-lineares |
title_short |
Linear and Non-linear time series analysis: forecasting financial markets |
title_full |
Linear and Non-linear time series analysis: forecasting financial markets |
title_fullStr |
Linear and Non-linear time series analysis: forecasting financial markets |
title_full_unstemmed |
Linear and Non-linear time series analysis: forecasting financial markets |
title_sort |
Linear and Non-linear time series analysis: forecasting financial markets |
author |
Barão, Sandra Maria Mestre |
author_facet |
Barão, Sandra Maria Mestre |
author_role |
author |
dc.contributor.author.fl_str_mv |
Barão, Sandra Maria Mestre |
dc.subject.por.fl_str_mv |
Stock returns Neural networks ARIMA models Linear time series Non linear time series Redes neuronais Retornos bolsistas Séries temporais lineares Séries temporais não-lineares |
topic |
Stock returns Neural networks ARIMA models Linear time series Non linear time series Redes neuronais Retornos bolsistas Séries temporais lineares Séries temporais não-lineares |
description |
Time series analyses in financial area have been attract some special attention in the recent years. The stock markets are examples of systems with a complex behaviour and, sometimes, forecasting a financial time series can be a hard task. In this thesis we compare linear against non-linear models, ARIMA and Artificial Neural Networks. Using the log returns of nine countries we tried to demonstrate that neural networks can be used to uncover the non-linearity that exists in the financial field. First we followed a traditional approach by analysing the characteristics of the nine stock series and some typical features. We also produce a BDS test to investigate the nonlinearity, the results were as expected, and none of the markets exhibit a linear dependence. In consequence, traditional linear models may not produce reliable forecasts. However, this didn’t mean that neural networks can. We trained four types of neural networks for the nine stock markets and the results between them were quite similar varying most in their structure and suggesting that more studies about the hidden units between the input and output layer need to be done. This study stresses the importance of taking into account nonlinear effects that are quite evident in the stock market MODELS. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01T00:00:00Z 2008 2008-09 2009-03-06T12:42:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/1375 |
url |
http://hdl.handle.net/10071/1375 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134834478546944 |