Linear and Non-linear time series analysis: forecasting financial markets

Detalhes bibliográficos
Autor(a) principal: Barão, Sandra Maria Mestre
Data de Publicação: 2008
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/1375
Resumo: Time series analyses in financial area have been attract some special attention in the recent years. The stock markets are examples of systems with a complex behaviour and, sometimes, forecasting a financial time series can be a hard task. In this thesis we compare linear against non-linear models, ARIMA and Artificial Neural Networks. Using the log returns of nine countries we tried to demonstrate that neural networks can be used to uncover the non-linearity that exists in the financial field. First we followed a traditional approach by analysing the characteristics of the nine stock series and some typical features. We also produce a BDS test to investigate the nonlinearity, the results were as expected, and none of the markets exhibit a linear dependence. In consequence, traditional linear models may not produce reliable forecasts. However, this didn’t mean that neural networks can. We trained four types of neural networks for the nine stock markets and the results between them were quite similar varying most in their structure and suggesting that more studies about the hidden units between the input and output layer need to be done. This study stresses the importance of taking into account nonlinear effects that are quite evident in the stock market MODELS.
id RCAP_a83d6f34cd7b85f80e4ed03d64bd64f5
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/1375
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Linear and Non-linear time series analysis: forecasting financial marketsStock returnsNeural networksARIMA modelsLinear time seriesNon linear time seriesRedes neuronaisRetornos bolsistasSéries temporais linearesSéries temporais não-linearesTime series analyses in financial area have been attract some special attention in the recent years. The stock markets are examples of systems with a complex behaviour and, sometimes, forecasting a financial time series can be a hard task. In this thesis we compare linear against non-linear models, ARIMA and Artificial Neural Networks. Using the log returns of nine countries we tried to demonstrate that neural networks can be used to uncover the non-linearity that exists in the financial field. First we followed a traditional approach by analysing the characteristics of the nine stock series and some typical features. We also produce a BDS test to investigate the nonlinearity, the results were as expected, and none of the markets exhibit a linear dependence. In consequence, traditional linear models may not produce reliable forecasts. However, this didn’t mean that neural networks can. We trained four types of neural networks for the nine stock markets and the results between them were quite similar varying most in their structure and suggesting that more studies about the hidden units between the input and output layer need to be done. This study stresses the importance of taking into account nonlinear effects that are quite evident in the stock market MODELS.A analise de séries temporais na area financeira tem atraido especial atenção nos últimos anos. Os mercados financeiros são exemplos de sistemas com um comportamento complexo e, por vezes, a previsão de séries temporais nesta àrea pode se tornar numa tarefa árdua. Nesta tese, iremos comparar os retornos logarítmicos proveninetes de nove mercados e monstrar que as redes neuronais podem ser utilizadas para detectar a não-linearidade existente nestes modelos. Primeiro, seguimos uma abordagem tradicional onde foram analisadas as características inerentes a cada um dos mercados. Executamos ainda o teste BDS para investigar a não-linearidade nas séries e, tal como esperado, os resultados confirmaram que nenhum dos mercados se apresenta como tendo um padrão linear. Dado este facto, os modelos lineares tradicionais poderão não produzir previsões fiáveis. Contudo, tal não quer dizer que as redes neuronais o façam. Foram treinadas quatro tipologias de redes para cada um dos nove mercados, sendo que, os resultados entre as mesmas foram bastante similares(variando em grande parte na estrutura que cada um das redes exibia) e, sugerindo que mais estudos devem ser feitos de modo a analisar o peso que as camadas ocultas possuem entre os neurónios de entrada e os de saída. Este estudo, enfatisa a importancia de se ter em conta que os efeitos não lineares devem ser estudados com certa significância nos mercados financeiros.2009-03-06T12:42:38Z2008-01-01T00:00:00Z20082008-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/1375engBarão, Sandra Maria Mestreinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:54:01Zoai:repositorio.iscte-iul.pt:10071/1375Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:27:09.109436Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Linear and Non-linear time series analysis: forecasting financial markets
title Linear and Non-linear time series analysis: forecasting financial markets
spellingShingle Linear and Non-linear time series analysis: forecasting financial markets
Barão, Sandra Maria Mestre
Stock returns
Neural networks
ARIMA models
Linear time series
Non linear time series
Redes neuronais
Retornos bolsistas
Séries temporais lineares
Séries temporais não-lineares
title_short Linear and Non-linear time series analysis: forecasting financial markets
title_full Linear and Non-linear time series analysis: forecasting financial markets
title_fullStr Linear and Non-linear time series analysis: forecasting financial markets
title_full_unstemmed Linear and Non-linear time series analysis: forecasting financial markets
title_sort Linear and Non-linear time series analysis: forecasting financial markets
author Barão, Sandra Maria Mestre
author_facet Barão, Sandra Maria Mestre
author_role author
dc.contributor.author.fl_str_mv Barão, Sandra Maria Mestre
dc.subject.por.fl_str_mv Stock returns
Neural networks
ARIMA models
Linear time series
Non linear time series
Redes neuronais
Retornos bolsistas
Séries temporais lineares
Séries temporais não-lineares
topic Stock returns
Neural networks
ARIMA models
Linear time series
Non linear time series
Redes neuronais
Retornos bolsistas
Séries temporais lineares
Séries temporais não-lineares
description Time series analyses in financial area have been attract some special attention in the recent years. The stock markets are examples of systems with a complex behaviour and, sometimes, forecasting a financial time series can be a hard task. In this thesis we compare linear against non-linear models, ARIMA and Artificial Neural Networks. Using the log returns of nine countries we tried to demonstrate that neural networks can be used to uncover the non-linearity that exists in the financial field. First we followed a traditional approach by analysing the characteristics of the nine stock series and some typical features. We also produce a BDS test to investigate the nonlinearity, the results were as expected, and none of the markets exhibit a linear dependence. In consequence, traditional linear models may not produce reliable forecasts. However, this didn’t mean that neural networks can. We trained four types of neural networks for the nine stock markets and the results between them were quite similar varying most in their structure and suggesting that more studies about the hidden units between the input and output layer need to be done. This study stresses the importance of taking into account nonlinear effects that are quite evident in the stock market MODELS.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01T00:00:00Z
2008
2008-09
2009-03-06T12:42:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/1375
url http://hdl.handle.net/10071/1375
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134834478546944