Anomaly detection on data streams from vehicular networks

Detalhes bibliográficos
Autor(a) principal: Eduardo Dantas Barreto Rodrigues
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/114154
Resumo: Vehicular networks are characterized by high mobility nodes that are only active when the vehicle is moving, thus making the network unpredictable and in constant change. In such a dynamic scenario, detecting anomalies in the network is a challenging but crucial task. Veniam operates a vehicular network that ensures reliable connectivity through heterogeneous networks such as LTE, Wi-Fi and DSRC, connecting the vehicles to the Internet and to other devices spread throughout the city. Over time, nodes send data to the cloud either by real time technologies or by delay tolerant ones, increasing the network's dynamics. The aim of this dissertation is to propose and implement a method for detecting anomalies in a real-world vehicular network through means of an online analysis of the data streams that come from the vehicles to the cloud. The network's streams were explored in order to characterize the available data and select target use cases. The chosen datasets were submitted to different anomaly detection techniques, such as time series forecasting and density-based outlier detection, followed by the trade-offs' analysis to select the algorithms that best modeled the data characteristics. The proposed solution comprises two stages: a lightweight screening step, followed by a Nearest Neighbor classification. The developed system was implemented on Veniam's distributed cluster running Apache Spark, allowing a fast and scalable solution that classifies the data as soon as it reaches the Cloud. The performance of the method was evaluated by its precision, i.e., the percentage of true anomalies within the detected outliers, when it was submitted to datasets presenting artificial anomalies from different data sources, received either by real-time or delay tolerant technologies.
id RCAP_a9b9c4684432f09681a509fbc1bea59e
oai_identifier_str oai:repositorio-aberto.up.pt:10216/114154
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Anomaly detection on data streams from vehicular networksEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringVehicular networks are characterized by high mobility nodes that are only active when the vehicle is moving, thus making the network unpredictable and in constant change. In such a dynamic scenario, detecting anomalies in the network is a challenging but crucial task. Veniam operates a vehicular network that ensures reliable connectivity through heterogeneous networks such as LTE, Wi-Fi and DSRC, connecting the vehicles to the Internet and to other devices spread throughout the city. Over time, nodes send data to the cloud either by real time technologies or by delay tolerant ones, increasing the network's dynamics. The aim of this dissertation is to propose and implement a method for detecting anomalies in a real-world vehicular network through means of an online analysis of the data streams that come from the vehicles to the cloud. The network's streams were explored in order to characterize the available data and select target use cases. The chosen datasets were submitted to different anomaly detection techniques, such as time series forecasting and density-based outlier detection, followed by the trade-offs' analysis to select the algorithms that best modeled the data characteristics. The proposed solution comprises two stages: a lightweight screening step, followed by a Nearest Neighbor classification. The developed system was implemented on Veniam's distributed cluster running Apache Spark, allowing a fast and scalable solution that classifies the data as soon as it reaches the Cloud. The performance of the method was evaluated by its precision, i.e., the percentage of true anomalies within the detected outliers, when it was submitted to datasets presenting artificial anomalies from different data sources, received either by real-time or delay tolerant technologies.2018-07-232018-07-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/114154TID:202114120engEduardo Dantas Barreto Rodriguesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:27:11Zoai:repositorio-aberto.up.pt:10216/114154Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:24:02.991712Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Anomaly detection on data streams from vehicular networks
title Anomaly detection on data streams from vehicular networks
spellingShingle Anomaly detection on data streams from vehicular networks
Eduardo Dantas Barreto Rodrigues
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short Anomaly detection on data streams from vehicular networks
title_full Anomaly detection on data streams from vehicular networks
title_fullStr Anomaly detection on data streams from vehicular networks
title_full_unstemmed Anomaly detection on data streams from vehicular networks
title_sort Anomaly detection on data streams from vehicular networks
author Eduardo Dantas Barreto Rodrigues
author_facet Eduardo Dantas Barreto Rodrigues
author_role author
dc.contributor.author.fl_str_mv Eduardo Dantas Barreto Rodrigues
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description Vehicular networks are characterized by high mobility nodes that are only active when the vehicle is moving, thus making the network unpredictable and in constant change. In such a dynamic scenario, detecting anomalies in the network is a challenging but crucial task. Veniam operates a vehicular network that ensures reliable connectivity through heterogeneous networks such as LTE, Wi-Fi and DSRC, connecting the vehicles to the Internet and to other devices spread throughout the city. Over time, nodes send data to the cloud either by real time technologies or by delay tolerant ones, increasing the network's dynamics. The aim of this dissertation is to propose and implement a method for detecting anomalies in a real-world vehicular network through means of an online analysis of the data streams that come from the vehicles to the cloud. The network's streams were explored in order to characterize the available data and select target use cases. The chosen datasets were submitted to different anomaly detection techniques, such as time series forecasting and density-based outlier detection, followed by the trade-offs' analysis to select the algorithms that best modeled the data characteristics. The proposed solution comprises two stages: a lightweight screening step, followed by a Nearest Neighbor classification. The developed system was implemented on Veniam's distributed cluster running Apache Spark, allowing a fast and scalable solution that classifies the data as soon as it reaches the Cloud. The performance of the method was evaluated by its precision, i.e., the percentage of true anomalies within the detected outliers, when it was submitted to datasets presenting artificial anomalies from different data sources, received either by real-time or delay tolerant technologies.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-23
2018-07-23T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/114154
TID:202114120
url https://hdl.handle.net/10216/114154
identifier_str_mv TID:202114120
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136155957985280