If This Do That: Interpretable Machine Learning Models For High Stakes Decision-Making
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/147468 |
Resumo: | In recent years, there has been an increasing trend in the use of black-box machine learning models in high-stakes decision making throughout different domains of society. Even though these models might be very accurate, there is a need to understand the reason behind the decisions, that is, a need to interpret the models. This need can be seen in predicting the waiting time in the Emergency Department of a hospital, where we can not simply trust a model prediction to manage a real health environment without understanding its reasons, thus, making black-box models impracticable in this scenario. Although multiple studies have aimed to explain black-box models, this can give the model even more power and be misleading which is why we should avoid it in highstakes decisions and use an interpretable model instead. This thesis demonstrates that interpretable machine learning models can be as good or even better than state of the art black-box models when predicting the waiting time in the Emergency Department of a hospital. Moreover, we also propose four new rulebased methods. To achieve this, we implemented 12 machine learning models, 6 noninterpretable (black-box) methods (ARIMA, SARIMA, Prophet, LSTM, GRU and the Transformer) and 6 rule-based and interpretable methods (RuleFit, SIRUS, REN, RDLL, RDLE and RDLR), 4 of which are proposed in this work (the REN, RDLL, RDLE and RDLR). The results obtained revealed that although some black-box models can achieve very good predictions of the waiting times in the emergency department, in some scenarios, interpretable models can outperform them. |
id |
RCAP_aaeefbdb143a8abadc0253d79979aeec |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/147468 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
If This Do That: Interpretable Machine Learning Models For High Stakes Decision-MakingInterpretabilityMachine LearningTime SeriesInterpretable Machine LearningRule-based AlgorithmsEmergency Department Waiting TimesDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIn recent years, there has been an increasing trend in the use of black-box machine learning models in high-stakes decision making throughout different domains of society. Even though these models might be very accurate, there is a need to understand the reason behind the decisions, that is, a need to interpret the models. This need can be seen in predicting the waiting time in the Emergency Department of a hospital, where we can not simply trust a model prediction to manage a real health environment without understanding its reasons, thus, making black-box models impracticable in this scenario. Although multiple studies have aimed to explain black-box models, this can give the model even more power and be misleading which is why we should avoid it in highstakes decisions and use an interpretable model instead. This thesis demonstrates that interpretable machine learning models can be as good or even better than state of the art black-box models when predicting the waiting time in the Emergency Department of a hospital. Moreover, we also propose four new rulebased methods. To achieve this, we implemented 12 machine learning models, 6 noninterpretable (black-box) methods (ARIMA, SARIMA, Prophet, LSTM, GRU and the Transformer) and 6 rule-based and interpretable methods (RuleFit, SIRUS, REN, RDLL, RDLE and RDLR), 4 of which are proposed in this work (the REN, RDLL, RDLE and RDLR). The results obtained revealed that although some black-box models can achieve very good predictions of the waiting times in the emergency department, in some scenarios, interpretable models can outperform them.Nos últimos anos, tem havido uma tendência crescente na utilização de modelos blackbox de machine learning na tomada de decisões de alto risco em diferentes domínios da sociedade. Embora estes modelos possam ser muito precisos, existe a necessidade de compreender a razão por detrás das decisões, isto é, existe uma necessidade de interpretar os modelos. Esta necessidade pode ser vista na previsão do tempo de espera no Departamento de Emergência de um hospital, onde não podemos simplesmente confiar numa previsão de um modelo para gerir um ambiente de saúde real sem compreender a sua razão, tornando assim os modelos black-box impraticáveis neste cenário. Apesar de terem sido desenvolvidos vários estudos com o objetivo de explicar os modelos black-box, isto pode dar-lhes ainda mais poder e ser enganador. Por estas razões devemos optar por usar um modelo interpretável em vez de modelos black-box. Esta tese demonstra que modelos de aprendizagem automática interpretáveis podem ser tão bons ou até mesmo melhores do que os modelos não interpretáveis considerados state-of-the-art ao prever o tempo de espera no departamento de emergência de um hospital. Além disso, esta tese propõe quatro modelos de aprendizagem automática novos baseados em regras. De forma a atingir estes objetivos, implementámos 12 modelos de aprendizegem automática, 6 dos quais não interpretáveis (black-box) (ARIMA, SARIMA, Prophet, LSTM, GRU e o Transformer) e 6 modelos interpretáveis baseados em regras (RuleFit, SIRUS, REN, RDLL, RDLE e RDLR ), 4 dos quais foram desenvolvidos e propostos nesta dissertação (REN, RDLL, RDLE e RDLR). Os resultados obtidos revelaram que, embora alguns modelos black-box consigam fazer previsões muito boas dos tempos de espera no serviço de urgência, em alguns cenários, os modelos interpretáveis são capazes de os superar.Soares, CláudiaLeite, JoãoGonçalves, RicardoKnorr, MatthiasRUNVasconcelos, Lourenço Malheiro Serpa de2023-01-13T15:40:17Z2022-112022-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/147468enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:28:37Zoai:run.unl.pt:10362/147468Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:56.960353Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
If This Do That: Interpretable Machine Learning Models For High Stakes Decision-Making |
title |
If This Do That: Interpretable Machine Learning Models For High Stakes Decision-Making |
spellingShingle |
If This Do That: Interpretable Machine Learning Models For High Stakes Decision-Making Vasconcelos, Lourenço Malheiro Serpa de Interpretability Machine Learning Time Series Interpretable Machine Learning Rule-based Algorithms Emergency Department Waiting Times Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
If This Do That: Interpretable Machine Learning Models For High Stakes Decision-Making |
title_full |
If This Do That: Interpretable Machine Learning Models For High Stakes Decision-Making |
title_fullStr |
If This Do That: Interpretable Machine Learning Models For High Stakes Decision-Making |
title_full_unstemmed |
If This Do That: Interpretable Machine Learning Models For High Stakes Decision-Making |
title_sort |
If This Do That: Interpretable Machine Learning Models For High Stakes Decision-Making |
author |
Vasconcelos, Lourenço Malheiro Serpa de |
author_facet |
Vasconcelos, Lourenço Malheiro Serpa de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Soares, Cláudia Leite, João Gonçalves, Ricardo Knorr, Matthias RUN |
dc.contributor.author.fl_str_mv |
Vasconcelos, Lourenço Malheiro Serpa de |
dc.subject.por.fl_str_mv |
Interpretability Machine Learning Time Series Interpretable Machine Learning Rule-based Algorithms Emergency Department Waiting Times Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Interpretability Machine Learning Time Series Interpretable Machine Learning Rule-based Algorithms Emergency Department Waiting Times Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
In recent years, there has been an increasing trend in the use of black-box machine learning models in high-stakes decision making throughout different domains of society. Even though these models might be very accurate, there is a need to understand the reason behind the decisions, that is, a need to interpret the models. This need can be seen in predicting the waiting time in the Emergency Department of a hospital, where we can not simply trust a model prediction to manage a real health environment without understanding its reasons, thus, making black-box models impracticable in this scenario. Although multiple studies have aimed to explain black-box models, this can give the model even more power and be misleading which is why we should avoid it in highstakes decisions and use an interpretable model instead. This thesis demonstrates that interpretable machine learning models can be as good or even better than state of the art black-box models when predicting the waiting time in the Emergency Department of a hospital. Moreover, we also propose four new rulebased methods. To achieve this, we implemented 12 machine learning models, 6 noninterpretable (black-box) methods (ARIMA, SARIMA, Prophet, LSTM, GRU and the Transformer) and 6 rule-based and interpretable methods (RuleFit, SIRUS, REN, RDLL, RDLE and RDLR), 4 of which are proposed in this work (the REN, RDLL, RDLE and RDLR). The results obtained revealed that although some black-box models can achieve very good predictions of the waiting times in the emergency department, in some scenarios, interpretable models can outperform them. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11 2022-11-01T00:00:00Z 2023-01-13T15:40:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/147468 |
url |
http://hdl.handle.net/10362/147468 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138120824782848 |