Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/100856 https://doi.org/10.1016/j.softx.2021.100694 |
Resumo: | This paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmark |
id |
RCAP_abb6b3611f5b25d6d61955f4d59b3968 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/100856 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fast-DENSER: Fast Deep Evolutionary Network Structured RepresentationArtificial Neural NetworksAutomated machine learningNeuroEvolutionThis paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmark2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/100856http://hdl.handle.net/10316/100856https://doi.org/10.1016/j.softx.2021.100694eng23527110Assunção, FilipeLourenço, NunoRibeiro, BernardeteMachado, Penousalinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-07-15T20:35:02Zoai:estudogeral.uc.pt:10316/100856Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:18:09.362943Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
title |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
spellingShingle |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation Assunção, Filipe Artificial Neural Networks Automated machine learning NeuroEvolution |
title_short |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
title_full |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
title_fullStr |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
title_full_unstemmed |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
title_sort |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
author |
Assunção, Filipe |
author_facet |
Assunção, Filipe Lourenço, Nuno Ribeiro, Bernardete Machado, Penousal |
author_role |
author |
author2 |
Lourenço, Nuno Ribeiro, Bernardete Machado, Penousal |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Assunção, Filipe Lourenço, Nuno Ribeiro, Bernardete Machado, Penousal |
dc.subject.por.fl_str_mv |
Artificial Neural Networks Automated machine learning NeuroEvolution |
topic |
Artificial Neural Networks Automated machine learning NeuroEvolution |
description |
This paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmark |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/100856 http://hdl.handle.net/10316/100856 https://doi.org/10.1016/j.softx.2021.100694 |
url |
http://hdl.handle.net/10316/100856 https://doi.org/10.1016/j.softx.2021.100694 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
23527110 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817551251513016320 |