Probabilistic clustering of interval data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.14/20309 |
Resumo: | In this paper we address the problem of clustering interval data, adopting a model-based approach. To this purpose, parametric models for interval-valued variables are used which consider configurations for the variance-covariance matrix that take the nature of the interval data directly into account. Results, both on synthetic and empirical data, clearly show the well-founding of the proposed approach. The method succeeds in finding parsimonious heterocedastic models which is a critical feature in many applications. Furthermore, the analysis of the different data sets made clear the need to explicitly consider the intrinsic variability present in interval data. |
id |
RCAP_abb7a91ba8adfd0b07bce26f7b8df2d3 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.pt:10400.14/20309 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Probabilistic clustering of interval dataClustering methodsFinite mixture modelsInterval-valued variableIntrinsic variabilitySymbolic dataIn this paper we address the problem of clustering interval data, adopting a model-based approach. To this purpose, parametric models for interval-valued variables are used which consider configurations for the variance-covariance matrix that take the nature of the interval data directly into account. Results, both on synthetic and empirical data, clearly show the well-founding of the proposed approach. The method succeeds in finding parsimonious heterocedastic models which is a critical feature in many applications. Furthermore, the analysis of the different data sets made clear the need to explicitly consider the intrinsic variability present in interval data.IOS PressVeritati - Repositório Institucional da Universidade Católica PortuguesaBrito, PaulaSilva, A. Pedro DuarteDias, José G.2016-06-28T11:36:48Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/20309engBRITO, Paula; DUARTE SILVA, A. P.; DIAS, José G. - Probabilistic Clustering of Interval Data. Intelligent Data Analysis. 1571-4128. Vol. 19, n.º 2 (2015), p. 293-3131571-412810.3233/IDA-1507181088-467X84928572252000353062400006info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-15T01:41:40Zoai:repositorio.ucp.pt:10400.14/20309Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:16:07.284941Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Probabilistic clustering of interval data |
title |
Probabilistic clustering of interval data |
spellingShingle |
Probabilistic clustering of interval data Brito, Paula Clustering methods Finite mixture models Interval-valued variable Intrinsic variability Symbolic data |
title_short |
Probabilistic clustering of interval data |
title_full |
Probabilistic clustering of interval data |
title_fullStr |
Probabilistic clustering of interval data |
title_full_unstemmed |
Probabilistic clustering of interval data |
title_sort |
Probabilistic clustering of interval data |
author |
Brito, Paula |
author_facet |
Brito, Paula Silva, A. Pedro Duarte Dias, José G. |
author_role |
author |
author2 |
Silva, A. Pedro Duarte Dias, José G. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Veritati - Repositório Institucional da Universidade Católica Portuguesa |
dc.contributor.author.fl_str_mv |
Brito, Paula Silva, A. Pedro Duarte Dias, José G. |
dc.subject.por.fl_str_mv |
Clustering methods Finite mixture models Interval-valued variable Intrinsic variability Symbolic data |
topic |
Clustering methods Finite mixture models Interval-valued variable Intrinsic variability Symbolic data |
description |
In this paper we address the problem of clustering interval data, adopting a model-based approach. To this purpose, parametric models for interval-valued variables are used which consider configurations for the variance-covariance matrix that take the nature of the interval data directly into account. Results, both on synthetic and empirical data, clearly show the well-founding of the proposed approach. The method succeeds in finding parsimonious heterocedastic models which is a critical feature in many applications. Furthermore, the analysis of the different data sets made clear the need to explicitly consider the intrinsic variability present in interval data. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z 2016-06-28T11:36:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.14/20309 |
url |
http://hdl.handle.net/10400.14/20309 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
BRITO, Paula; DUARTE SILVA, A. P.; DIAS, José G. - Probabilistic Clustering of Interval Data. Intelligent Data Analysis. 1571-4128. Vol. 19, n.º 2 (2015), p. 293-313 1571-4128 10.3233/IDA-150718 1088-467X 84928572252 000353062400006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IOS Press |
publisher.none.fl_str_mv |
IOS Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131843754196992 |