Probabilistic clustering of interval data

Detalhes bibliográficos
Autor(a) principal: Brito, Paula
Data de Publicação: 2015
Outros Autores: Silva, A. Pedro Duarte, Dias, José G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/20309
Resumo: In this paper we address the problem of clustering interval data, adopting a model-based approach. To this purpose, parametric models for interval-valued variables are used which consider configurations for the variance-covariance matrix that take the nature of the interval data directly into account. Results, both on synthetic and empirical data, clearly show the well-founding of the proposed approach. The method succeeds in finding parsimonious heterocedastic models which is a critical feature in many applications. Furthermore, the analysis of the different data sets made clear the need to explicitly consider the intrinsic variability present in interval data.
id RCAP_abb7a91ba8adfd0b07bce26f7b8df2d3
oai_identifier_str oai:repositorio.ucp.pt:10400.14/20309
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Probabilistic clustering of interval dataClustering methodsFinite mixture modelsInterval-valued variableIntrinsic variabilitySymbolic dataIn this paper we address the problem of clustering interval data, adopting a model-based approach. To this purpose, parametric models for interval-valued variables are used which consider configurations for the variance-covariance matrix that take the nature of the interval data directly into account. Results, both on synthetic and empirical data, clearly show the well-founding of the proposed approach. The method succeeds in finding parsimonious heterocedastic models which is a critical feature in many applications. Furthermore, the analysis of the different data sets made clear the need to explicitly consider the intrinsic variability present in interval data.IOS PressVeritati - Repositório Institucional da Universidade Católica PortuguesaBrito, PaulaSilva, A. Pedro DuarteDias, José G.2016-06-28T11:36:48Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/20309engBRITO, Paula; DUARTE SILVA, A. P.; DIAS, José G. - Probabilistic Clustering of Interval Data. Intelligent Data Analysis. 1571-4128. Vol. 19, n.º 2 (2015), p. 293-3131571-412810.3233/IDA-1507181088-467X84928572252000353062400006info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-15T01:41:40Zoai:repositorio.ucp.pt:10400.14/20309Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:16:07.284941Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Probabilistic clustering of interval data
title Probabilistic clustering of interval data
spellingShingle Probabilistic clustering of interval data
Brito, Paula
Clustering methods
Finite mixture models
Interval-valued variable
Intrinsic variability
Symbolic data
title_short Probabilistic clustering of interval data
title_full Probabilistic clustering of interval data
title_fullStr Probabilistic clustering of interval data
title_full_unstemmed Probabilistic clustering of interval data
title_sort Probabilistic clustering of interval data
author Brito, Paula
author_facet Brito, Paula
Silva, A. Pedro Duarte
Dias, José G.
author_role author
author2 Silva, A. Pedro Duarte
Dias, José G.
author2_role author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Brito, Paula
Silva, A. Pedro Duarte
Dias, José G.
dc.subject.por.fl_str_mv Clustering methods
Finite mixture models
Interval-valued variable
Intrinsic variability
Symbolic data
topic Clustering methods
Finite mixture models
Interval-valued variable
Intrinsic variability
Symbolic data
description In this paper we address the problem of clustering interval data, adopting a model-based approach. To this purpose, parametric models for interval-valued variables are used which consider configurations for the variance-covariance matrix that take the nature of the interval data directly into account. Results, both on synthetic and empirical data, clearly show the well-founding of the proposed approach. The method succeeds in finding parsimonious heterocedastic models which is a critical feature in many applications. Furthermore, the analysis of the different data sets made clear the need to explicitly consider the intrinsic variability present in interval data.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
2016-06-28T11:36:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/20309
url http://hdl.handle.net/10400.14/20309
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv BRITO, Paula; DUARTE SILVA, A. P.; DIAS, José G. - Probabilistic Clustering of Interval Data. Intelligent Data Analysis. 1571-4128. Vol. 19, n.º 2 (2015), p. 293-313
1571-4128
10.3233/IDA-150718
1088-467X
84928572252
000353062400006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOS Press
publisher.none.fl_str_mv IOS Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131843754196992