Dense heteroclinic tangencies near a Bykov cycle

Detalhes bibliográficos
Autor(a) principal: Isabel S Labouriau
Data de Publicação: 2015
Outros Autores: Alexandre A P Rodrigues
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/90677
Resumo: This article presents a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising in a neighbourhood of a Bykov cycle where trajectories turn in opposite directions near the two nodes - we say that the nodes have different chirality. We show that in the set of vector fields defined on a three-dimensional manifold, there is a class where tangencies of the invariant manifolds of two hyperbolic saddle-foci occur densely. The class is defined by the presence of the Bykov cycle, and by a condition on the parameters that determine the linear part of the vector field at the equilibria. This has important consequences: the global dynamics is persistently dominated by heteroclinic tangencies and by Newhouse phenomena, coexisting with hyperbolic dynamics arising from transversality. The coexistence gives rise to linked suspensions of Cantor sets, with hyperbolic and non-hyperbolic dynamics, in contrast with the case where the nodes have the same chirality. We illustrate our theory with an explicit example where tangencies arise in the unfolding of a symmetric vector field on the three-dimensional sphere. (c) 2015 Elsevier Inc.
id RCAP_abce2ba28182e7e09583e764a1669c08
oai_identifier_str oai:repositorio-aberto.up.pt:10216/90677
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Dense heteroclinic tangencies near a Bykov cycleThis article presents a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising in a neighbourhood of a Bykov cycle where trajectories turn in opposite directions near the two nodes - we say that the nodes have different chirality. We show that in the set of vector fields defined on a three-dimensional manifold, there is a class where tangencies of the invariant manifolds of two hyperbolic saddle-foci occur densely. The class is defined by the presence of the Bykov cycle, and by a condition on the parameters that determine the linear part of the vector field at the equilibria. This has important consequences: the global dynamics is persistently dominated by heteroclinic tangencies and by Newhouse phenomena, coexisting with hyperbolic dynamics arising from transversality. The coexistence gives rise to linked suspensions of Cantor sets, with hyperbolic and non-hyperbolic dynamics, in contrast with the case where the nodes have the same chirality. We illustrate our theory with an explicit example where tangencies arise in the unfolding of a symmetric vector field on the three-dimensional sphere. (c) 2015 Elsevier Inc.20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/90677eng0022-039610.1016/j.jde.2015.07.017Isabel S LabouriauAlexandre A P Rodriguesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:35:11Zoai:repositorio-aberto.up.pt:10216/90677Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:27:17.831197Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Dense heteroclinic tangencies near a Bykov cycle
title Dense heteroclinic tangencies near a Bykov cycle
spellingShingle Dense heteroclinic tangencies near a Bykov cycle
Isabel S Labouriau
title_short Dense heteroclinic tangencies near a Bykov cycle
title_full Dense heteroclinic tangencies near a Bykov cycle
title_fullStr Dense heteroclinic tangencies near a Bykov cycle
title_full_unstemmed Dense heteroclinic tangencies near a Bykov cycle
title_sort Dense heteroclinic tangencies near a Bykov cycle
author Isabel S Labouriau
author_facet Isabel S Labouriau
Alexandre A P Rodrigues
author_role author
author2 Alexandre A P Rodrigues
author2_role author
dc.contributor.author.fl_str_mv Isabel S Labouriau
Alexandre A P Rodrigues
description This article presents a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising in a neighbourhood of a Bykov cycle where trajectories turn in opposite directions near the two nodes - we say that the nodes have different chirality. We show that in the set of vector fields defined on a three-dimensional manifold, there is a class where tangencies of the invariant manifolds of two hyperbolic saddle-foci occur densely. The class is defined by the presence of the Bykov cycle, and by a condition on the parameters that determine the linear part of the vector field at the equilibria. This has important consequences: the global dynamics is persistently dominated by heteroclinic tangencies and by Newhouse phenomena, coexisting with hyperbolic dynamics arising from transversality. The coexistence gives rise to linked suspensions of Cantor sets, with hyperbolic and non-hyperbolic dynamics, in contrast with the case where the nodes have the same chirality. We illustrate our theory with an explicit example where tangencies arise in the unfolding of a symmetric vector field on the three-dimensional sphere. (c) 2015 Elsevier Inc.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/90677
url https://hdl.handle.net/10216/90677
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-0396
10.1016/j.jde.2015.07.017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136185360056320