Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection

Detalhes bibliográficos
Autor(a) principal: Balayan, Vladimir
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/130774
Resumo: Machine Learning (ML) has been increasingly used to aid humans making high-stakes decisions in a wide range of areas, from public policy to criminal justice, education, healthcare, or financial services. However, it is very hard for humans to grasp the rationale behind every ML model’s prediction, hindering trust in the system. The field of Explainable Artificial Intelligence (XAI) emerged to tackle this problem, aiming to research and develop methods to make those “black-boxes” more interpretable, but there is still no major breakthrough. Additionally, the most popular explanation methods — LIME and SHAP — produce very low-level feature attribution explanations, being of limited usefulness to personas without any ML knowledge. This work was developed at Feedzai, a fintech company that uses ML to prevent financial crime. One of the main Feedzai products is a case management application used by fraud analysts to review suspicious financial transactions flagged by the ML models. Fraud analysts are domain experts trained to look for suspicious evidence in transactions but they do not have ML knowledge, and consequently, current XAI methods do not suit their information needs. To address this, we present JOEL, a neural network-based framework to jointly learn a decision-making task and associated domain knowledge explanations. JOEL is tailored to human-in-the-loop domain experts that lack deep technical ML knowledge, providing high-level insights about the model’s predictions that very much resemble the experts’ own reasoning. Moreover, by collecting the domain feedback from a pool of certified experts (human teaching), we promote seamless and better quality explanations. Lastly, we resort to semantic mappings between legacy expert systems and domain taxonomies to automatically annotate a bootstrap training set, overcoming the absence of concept-based human annotations. We validate JOEL empirically on a real-world fraud detection dataset, at Feedzai. We show that JOEL can generalize the explanations from the bootstrap dataset. Furthermore, obtained results indicate that human teaching is able to further improve the explanations prediction quality.
id RCAP_ac024887bd351b0e007d865c89dab544
oai_identifier_str oai:run.unl.pt:10362/130774
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud DetectionMachine LearningExplainable AIDomain Knowledge ExplanationsSelf- Explainable MethodsHuman-AI Cooperative systemsDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaMachine Learning (ML) has been increasingly used to aid humans making high-stakes decisions in a wide range of areas, from public policy to criminal justice, education, healthcare, or financial services. However, it is very hard for humans to grasp the rationale behind every ML model’s prediction, hindering trust in the system. The field of Explainable Artificial Intelligence (XAI) emerged to tackle this problem, aiming to research and develop methods to make those “black-boxes” more interpretable, but there is still no major breakthrough. Additionally, the most popular explanation methods — LIME and SHAP — produce very low-level feature attribution explanations, being of limited usefulness to personas without any ML knowledge. This work was developed at Feedzai, a fintech company that uses ML to prevent financial crime. One of the main Feedzai products is a case management application used by fraud analysts to review suspicious financial transactions flagged by the ML models. Fraud analysts are domain experts trained to look for suspicious evidence in transactions but they do not have ML knowledge, and consequently, current XAI methods do not suit their information needs. To address this, we present JOEL, a neural network-based framework to jointly learn a decision-making task and associated domain knowledge explanations. JOEL is tailored to human-in-the-loop domain experts that lack deep technical ML knowledge, providing high-level insights about the model’s predictions that very much resemble the experts’ own reasoning. Moreover, by collecting the domain feedback from a pool of certified experts (human teaching), we promote seamless and better quality explanations. Lastly, we resort to semantic mappings between legacy expert systems and domain taxonomies to automatically annotate a bootstrap training set, overcoming the absence of concept-based human annotations. We validate JOEL empirically on a real-world fraud detection dataset, at Feedzai. We show that JOEL can generalize the explanations from the bootstrap dataset. Furthermore, obtained results indicate that human teaching is able to further improve the explanations prediction quality.A Aprendizagem de Máquina (AM) tem sido cada vez mais utilizada para ajudar os humanos a tomar decisões de alto risco numa vasta gama de áreas, desde política até à justiça criminal, educação, saúde e serviços financeiros. Porém, é muito difícil para os humanos perceber a razão da decisão do modelo de AM, prejudicando assim a confiança no sistema. O campo da Inteligência Artificial Explicável (IAE) surgiu para enfrentar este problema, visando desenvolver métodos para tornar as “caixas-pretas” mais interpretáveis, embora ainda sem grande avanço. Além disso, os métodos de explicação mais populares — LIME and SHAP — produzem explicações de muito baixo nível, sendo de utilidade limitada para pessoas sem conhecimento de AM. Este trabalho foi desenvolvido na Feedzai, a fintech que usa a AM para prevenir crimes financeiros. Um dos produtos da Feedzai é uma aplicação de gestão de casos, usada por analistas de fraude. Estes são especialistas no domínio treinados para procurar evidências suspeitas em transações financeiras, contudo não tendo o conhecimento em AM, os métodos de IAE atuais não satisfazem as suas necessidades de informação. Para resolver isso, apresentamos JOEL, a framework baseada em rede neuronal para aprender conjuntamente a tarefa de tomada de decisão e as explicações associadas. A JOEL é orientada a especialistas de domínio que não têm conhecimento técnico profundo de AM, fornecendo informações de alto nível sobre as previsões do modelo, que muito se assemelham ao raciocínio dos próprios especialistas. Ademais, ao recolher o feedback de especialistas certificados (ensino humano), promovemos explicações contínuas e de melhor qualidade. Por último, recorremos a mapeamentos semânticos entre sistemas legados e taxonomias de domínio para anotar automaticamente um conjunto de dados, superando a ausência de anotações humanas baseadas em conceitos. Validamos a JOEL empiricamente em um conjunto de dados de detecção de fraude do mundo real, na Feedzai. Mostramos que a JOEL pode generalizar as explicações aprendidas no conjunto de dados inicial e que o ensino humano é capaz de melhorar a qualidade da previsão das explicações.Saleiro, PedroKrippahl, LudwigRUNBalayan, Vladimir2022-01-13T11:54:49Z2020-122020-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/130774enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:09:24Zoai:run.unl.pt:10362/130774Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:46:53.343080Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection
title Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection
spellingShingle Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection
Balayan, Vladimir
Machine Learning
Explainable AI
Domain Knowledge Explanations
Self- Explainable Methods
Human-AI Cooperative systems
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection
title_full Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection
title_fullStr Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection
title_full_unstemmed Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection
title_sort Human-Interpretable Explanations for Black-Box Machine Learning Models: An Application to Fraud Detection
author Balayan, Vladimir
author_facet Balayan, Vladimir
author_role author
dc.contributor.none.fl_str_mv Saleiro, Pedro
Krippahl, Ludwig
RUN
dc.contributor.author.fl_str_mv Balayan, Vladimir
dc.subject.por.fl_str_mv Machine Learning
Explainable AI
Domain Knowledge Explanations
Self- Explainable Methods
Human-AI Cooperative systems
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Machine Learning
Explainable AI
Domain Knowledge Explanations
Self- Explainable Methods
Human-AI Cooperative systems
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Machine Learning (ML) has been increasingly used to aid humans making high-stakes decisions in a wide range of areas, from public policy to criminal justice, education, healthcare, or financial services. However, it is very hard for humans to grasp the rationale behind every ML model’s prediction, hindering trust in the system. The field of Explainable Artificial Intelligence (XAI) emerged to tackle this problem, aiming to research and develop methods to make those “black-boxes” more interpretable, but there is still no major breakthrough. Additionally, the most popular explanation methods — LIME and SHAP — produce very low-level feature attribution explanations, being of limited usefulness to personas without any ML knowledge. This work was developed at Feedzai, a fintech company that uses ML to prevent financial crime. One of the main Feedzai products is a case management application used by fraud analysts to review suspicious financial transactions flagged by the ML models. Fraud analysts are domain experts trained to look for suspicious evidence in transactions but they do not have ML knowledge, and consequently, current XAI methods do not suit their information needs. To address this, we present JOEL, a neural network-based framework to jointly learn a decision-making task and associated domain knowledge explanations. JOEL is tailored to human-in-the-loop domain experts that lack deep technical ML knowledge, providing high-level insights about the model’s predictions that very much resemble the experts’ own reasoning. Moreover, by collecting the domain feedback from a pool of certified experts (human teaching), we promote seamless and better quality explanations. Lastly, we resort to semantic mappings between legacy expert systems and domain taxonomies to automatically annotate a bootstrap training set, overcoming the absence of concept-based human annotations. We validate JOEL empirically on a real-world fraud detection dataset, at Feedzai. We show that JOEL can generalize the explanations from the bootstrap dataset. Furthermore, obtained results indicate that human teaching is able to further improve the explanations prediction quality.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
2020-12-01T00:00:00Z
2022-01-13T11:54:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/130774
url http://hdl.handle.net/10362/130774
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138071748280320