Analysing and forecasting tourism demand in Vietnam with artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Nguyen, Le Quyen
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10198/25039
Resumo: Mestrado APNOR
id RCAP_ac6266834fc214ad7411811f857ad57e
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/25039
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Analysing and forecasting tourism demand in Vietnam with artificial neural networksArtificial neural networksInternational touristsTourism forecastingTourism demandVietnamDomínio/Área Científica::Ciências Sociais::Economia e GestãoMestrado APNORVietnam has experienced a tourism boom over the last decade with more than 18 million international tourists in 2019, compared to 1.5 million twenty-five years ago. Tourist spending has translated into rising employment and income for the tourism sector, making it the key driver to the socio-economic development of the country. Facing the COVID-19 pandemic, Vietnam´s tourism has suffered extreme economic losses. However, the number of international tourists is expected to reach the pre-pandemic levels in the next few years after the COVID-19 pandemic subsides. Forecasting tourism demand plays an essential role in predicting future economic development. Accurate predictions of tourism volume would facilitate decision-makers and managers to optimize resource allocation as well as to balance environmental and economic aspects. Various methods to predict tourism demand have been introduced over the years. One of the most prominent approaches is Artificial Neural Network (ANN) thanks to its capability to handle highly volatile and non-linear data. Given the significance of tourism to the economy, a precise forecast of tourism demand would help to foresee the potential economic growth of Vietnam. First, the research aims to analyse Vietnam´s tourism sector with a special focus on international tourists. Next, several ANN architectures are experimented with the datasets from 2008 to 2020, to predict the monthly number of international tourists traveling to Vietnam including COVID-19 lockdown periods. The results showed that with the correct selection of ANN architectures and data from the previous 12 months, the best ANN models can forecast the number of international tourists for next month with a MAPE between 7.9% and 9.2%. As the method proves its forecasting accuracy, it would serve as a valuable tool for Vietnam´s policymakers and firm managers to make better investment and strategic decisions to promote tourism after the COVID-19 situation.O Vietname conheceu um boom turístico na última década com mais de 18 milhões de turistas internacionais em 2019, em comparação com 1,5 milhões há vinte e cinco anos. As despesas turísticas traduziram-se num aumento do emprego e de receitas no sector do turismo, tornando-o no principal motor do desenvolvimento socioeconómico do país. Perante a pandemia da COVID-19, o turismo no Vietname sofreu perdas económicas extremas. Porém, espera-se que o número de turistas internacionais, pós pandemia da COVID-19, atinja os níveis pré-pandémicos nos próximos anos. A previsão da procura turística desempenha um papel essencial na previsão do desenvolvimento económico futuro. Previsões precisas facilitariam os decisores e gestores a otimizar a afetação de recursos, bem como o equilíbrio entre os aspetos ambientais e económicos. Vários métodos para prever a procura turística têm sido introduzidos ao longo dos anos. Uma das abordagens mais proeminentes assenta na metodologia das Redes Neuronais Artificiais (ANN) dada a sua capacidade de lidar com dados voláteis e não lineares. Dada a importância do turismo para a economia, uma previsão precisa da procura turística ajudaria a prever o crescimento económico potencial do Vietname. Em primeiro lugar, a investigação tem por objetivo analisar o sector turístico do Vietname com especial incidência nos turistas internacionais. Em seguida, várias arquiteturas de ANN são experimentadas com um conjunto de dados de 2008 a 2020, para prever o número mensal de turistas internacionais que se deslocam ao Vietname, incluindo os períodos de confinamento relacionados com a COVID-19. Os resultados mostraram, com a correta seleção de arquiteturas ANN e dados dos 12 meses anteriores, os melhores modelos ANN podem prever o número de turistas internacionais para o próximo mês com uma MAPE entre 7,9% e 9,2%. Como o método evidenciou a sua precisão de previsão, o mesmo pode servir como uma ferramenta valiosa para os decisores políticos e gestores de empresas do Vietname, pois irá permitir fazer melhores investimentos e tomarem decisões estratégicas para promover o turismo pós situação da COVID-19.Fernandes, Paula O.Teixeira, João PauloBiblioteca Digital do IPBNguyen, Le Quyen2022-02-07T11:51:09Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10198/25039TID:202929353enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:55:59Zoai:bibliotecadigital.ipb.pt:10198/25039Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:15:46.118639Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Analysing and forecasting tourism demand in Vietnam with artificial neural networks
title Analysing and forecasting tourism demand in Vietnam with artificial neural networks
spellingShingle Analysing and forecasting tourism demand in Vietnam with artificial neural networks
Nguyen, Le Quyen
Artificial neural networks
International tourists
Tourism forecasting
Tourism demand
Vietnam
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Analysing and forecasting tourism demand in Vietnam with artificial neural networks
title_full Analysing and forecasting tourism demand in Vietnam with artificial neural networks
title_fullStr Analysing and forecasting tourism demand in Vietnam with artificial neural networks
title_full_unstemmed Analysing and forecasting tourism demand in Vietnam with artificial neural networks
title_sort Analysing and forecasting tourism demand in Vietnam with artificial neural networks
author Nguyen, Le Quyen
author_facet Nguyen, Le Quyen
author_role author
dc.contributor.none.fl_str_mv Fernandes, Paula O.
Teixeira, João Paulo
Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Nguyen, Le Quyen
dc.subject.por.fl_str_mv Artificial neural networks
International tourists
Tourism forecasting
Tourism demand
Vietnam
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Artificial neural networks
International tourists
Tourism forecasting
Tourism demand
Vietnam
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Mestrado APNOR
publishDate 2022
dc.date.none.fl_str_mv 2022-02-07T11:51:09Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/25039
TID:202929353
url http://hdl.handle.net/10198/25039
identifier_str_mv TID:202929353
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135440809230336