Analysing and forecasting tourism demand in Vietnam with artificial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10198/25039 |
Resumo: | Mestrado APNOR |
id |
RCAP_ac6266834fc214ad7411811f857ad57e |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/25039 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysing and forecasting tourism demand in Vietnam with artificial neural networksArtificial neural networksInternational touristsTourism forecastingTourism demandVietnamDomínio/Área Científica::Ciências Sociais::Economia e GestãoMestrado APNORVietnam has experienced a tourism boom over the last decade with more than 18 million international tourists in 2019, compared to 1.5 million twenty-five years ago. Tourist spending has translated into rising employment and income for the tourism sector, making it the key driver to the socio-economic development of the country. Facing the COVID-19 pandemic, Vietnam´s tourism has suffered extreme economic losses. However, the number of international tourists is expected to reach the pre-pandemic levels in the next few years after the COVID-19 pandemic subsides. Forecasting tourism demand plays an essential role in predicting future economic development. Accurate predictions of tourism volume would facilitate decision-makers and managers to optimize resource allocation as well as to balance environmental and economic aspects. Various methods to predict tourism demand have been introduced over the years. One of the most prominent approaches is Artificial Neural Network (ANN) thanks to its capability to handle highly volatile and non-linear data. Given the significance of tourism to the economy, a precise forecast of tourism demand would help to foresee the potential economic growth of Vietnam. First, the research aims to analyse Vietnam´s tourism sector with a special focus on international tourists. Next, several ANN architectures are experimented with the datasets from 2008 to 2020, to predict the monthly number of international tourists traveling to Vietnam including COVID-19 lockdown periods. The results showed that with the correct selection of ANN architectures and data from the previous 12 months, the best ANN models can forecast the number of international tourists for next month with a MAPE between 7.9% and 9.2%. As the method proves its forecasting accuracy, it would serve as a valuable tool for Vietnam´s policymakers and firm managers to make better investment and strategic decisions to promote tourism after the COVID-19 situation.O Vietname conheceu um boom turístico na última década com mais de 18 milhões de turistas internacionais em 2019, em comparação com 1,5 milhões há vinte e cinco anos. As despesas turísticas traduziram-se num aumento do emprego e de receitas no sector do turismo, tornando-o no principal motor do desenvolvimento socioeconómico do país. Perante a pandemia da COVID-19, o turismo no Vietname sofreu perdas económicas extremas. Porém, espera-se que o número de turistas internacionais, pós pandemia da COVID-19, atinja os níveis pré-pandémicos nos próximos anos. A previsão da procura turística desempenha um papel essencial na previsão do desenvolvimento económico futuro. Previsões precisas facilitariam os decisores e gestores a otimizar a afetação de recursos, bem como o equilíbrio entre os aspetos ambientais e económicos. Vários métodos para prever a procura turística têm sido introduzidos ao longo dos anos. Uma das abordagens mais proeminentes assenta na metodologia das Redes Neuronais Artificiais (ANN) dada a sua capacidade de lidar com dados voláteis e não lineares. Dada a importância do turismo para a economia, uma previsão precisa da procura turística ajudaria a prever o crescimento económico potencial do Vietname. Em primeiro lugar, a investigação tem por objetivo analisar o sector turístico do Vietname com especial incidência nos turistas internacionais. Em seguida, várias arquiteturas de ANN são experimentadas com um conjunto de dados de 2008 a 2020, para prever o número mensal de turistas internacionais que se deslocam ao Vietname, incluindo os períodos de confinamento relacionados com a COVID-19. Os resultados mostraram, com a correta seleção de arquiteturas ANN e dados dos 12 meses anteriores, os melhores modelos ANN podem prever o número de turistas internacionais para o próximo mês com uma MAPE entre 7,9% e 9,2%. Como o método evidenciou a sua precisão de previsão, o mesmo pode servir como uma ferramenta valiosa para os decisores políticos e gestores de empresas do Vietname, pois irá permitir fazer melhores investimentos e tomarem decisões estratégicas para promover o turismo pós situação da COVID-19.Fernandes, Paula O.Teixeira, João PauloBiblioteca Digital do IPBNguyen, Le Quyen2022-02-07T11:51:09Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10198/25039TID:202929353enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:55:59Zoai:bibliotecadigital.ipb.pt:10198/25039Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:15:46.118639Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysing and forecasting tourism demand in Vietnam with artificial neural networks |
title |
Analysing and forecasting tourism demand in Vietnam with artificial neural networks |
spellingShingle |
Analysing and forecasting tourism demand in Vietnam with artificial neural networks Nguyen, Le Quyen Artificial neural networks International tourists Tourism forecasting Tourism demand Vietnam Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Analysing and forecasting tourism demand in Vietnam with artificial neural networks |
title_full |
Analysing and forecasting tourism demand in Vietnam with artificial neural networks |
title_fullStr |
Analysing and forecasting tourism demand in Vietnam with artificial neural networks |
title_full_unstemmed |
Analysing and forecasting tourism demand in Vietnam with artificial neural networks |
title_sort |
Analysing and forecasting tourism demand in Vietnam with artificial neural networks |
author |
Nguyen, Le Quyen |
author_facet |
Nguyen, Le Quyen |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fernandes, Paula O. Teixeira, João Paulo Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Nguyen, Le Quyen |
dc.subject.por.fl_str_mv |
Artificial neural networks International tourists Tourism forecasting Tourism demand Vietnam Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Artificial neural networks International tourists Tourism forecasting Tourism demand Vietnam Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Mestrado APNOR |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-07T11:51:09Z 2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/25039 TID:202929353 |
url |
http://hdl.handle.net/10198/25039 |
identifier_str_mv |
TID:202929353 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135440809230336 |