Development of structures and materials suitable to protect hydrogen tanks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/41093 |
Resumo: | Dubbed the energy of the future, hydrogen shows excellent promise as a substitute for conventional fossil fuels. Nonetheless, the hydrogen chain safety protocols, and particularly its storage, are less well-established than those regarding fossil fuels, which limits hydrogen’s adoption and use. The primary goal of this project is to determine whether coating hydrogen storage tanks with composite materials based on cork agglomerates can improve their safety, especially in the event of fires, explosions, or impacts. It also aims to explore the relationship between these composites’ density and mechanical and thermal behaviour. The samples underwent thermal testing to assess the thermal conductivity, diffusivity and fire behaviour in addition to mechanical testing, particularly quasi-static compression and dynamic impact tests. Additionally, using Finite Element Analysis (FEA), a numerical model was created to verify the mechanical results. It was found that these materials are suitable for coating hydrogen storage tanks because they offer excellent thermal insulation, stimulate longer fire exposure times, and act as energy absorbers in the event of explosions or collisions. It has been discovered that lower densities encourage energy absorption during dynamic events. The validated numerical model supported these findings. Higher densities have been found to improve fire resistance since they produce smaller burned areas and less lost mass. It was also shown that diffusivity and specific heat have a more significant impact on thermal insulation against fire than thermal conductivity. A simple and suggestive prototype demonstrating how these materials can cover tanks was also produced as a result of this research. The creation of coatings using these materials is new in the field and aids in a safe acceleration of the energy transition without sacrificing any consideration for the Green Deal or the Sustainable Development Goals (SDGs). |
id |
RCAP_ac98dfb4d06a08d226f10cf3e7540521 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41093 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development of structures and materials suitable to protect hydrogen tanksHydrogen storageCork agglomeratesEnergy absorptionThermal insulationMechanical characterizationFinite element analysis (FEA)Numerical modellingDubbed the energy of the future, hydrogen shows excellent promise as a substitute for conventional fossil fuels. Nonetheless, the hydrogen chain safety protocols, and particularly its storage, are less well-established than those regarding fossil fuels, which limits hydrogen’s adoption and use. The primary goal of this project is to determine whether coating hydrogen storage tanks with composite materials based on cork agglomerates can improve their safety, especially in the event of fires, explosions, or impacts. It also aims to explore the relationship between these composites’ density and mechanical and thermal behaviour. The samples underwent thermal testing to assess the thermal conductivity, diffusivity and fire behaviour in addition to mechanical testing, particularly quasi-static compression and dynamic impact tests. Additionally, using Finite Element Analysis (FEA), a numerical model was created to verify the mechanical results. It was found that these materials are suitable for coating hydrogen storage tanks because they offer excellent thermal insulation, stimulate longer fire exposure times, and act as energy absorbers in the event of explosions or collisions. It has been discovered that lower densities encourage energy absorption during dynamic events. The validated numerical model supported these findings. Higher densities have been found to improve fire resistance since they produce smaller burned areas and less lost mass. It was also shown that diffusivity and specific heat have a more significant impact on thermal insulation against fire than thermal conductivity. A simple and suggestive prototype demonstrating how these materials can cover tanks was also produced as a result of this research. The creation of coatings using these materials is new in the field and aids in a safe acceleration of the energy transition without sacrificing any consideration for the Green Deal or the Sustainable Development Goals (SDGs).Apelidado de energia do futuro, o hidrogénio apresenta-se como um substituto bastante promissor aos combustíveis fósseis convencionais. No entanto, as condições de segurança da totalidade da cadeia do hidrogénio, e particularmente o seu armazenamento, não se encontram tão bem estabelecidas como as dos combustíveis fósseis, o que limita a adoção e utilização do hidrogénio. O objetivo principal deste projeto é investigar se revestimentos de materiais compósitos à base de aglomerados de cortiça podem melhorar as condições de segurança dos tanques de armazenamento de hidrogénio, especialmente em caso de incêndios, explosões ou impactos. O presente projeto pretende também estudar a relação entre densidade destes materiais compósitos e o comportamento térmico e mecânico dos mesmos. As amostras foram submetidas a ensaios térmicos com o objetivo de avaliar a condutividade e difusividade térmica bem como o comportamento térmico ao fogo, para além de ensaios mecânicos de compressão uniaxial quase-estática e de impacto dinâmico. Adicionalmente, através da utilização do Método dos Elementos Finitos (MEF) foi desenvolvido um modelo numérico de modo a verificar os resultados mecânicos experimentais. Verificou-se que estes materiais compósitos à base de aglomerados de cortiça são adequados para o revestimentos de reservatórios de armazenamento de hidrogénio uma vez que oferecem um grande isolamento térmico, permitem tempos de exposição ao fogo mais longos e atuam como absorvedores de energia em caso de explosões ou colisões. Foi descoberto que densidades menores estimulam uma maior capacidade de absorção de energia durante eventos dinâmicos. O modelo numérico desenvolvido e validado suportou e corroborou estas descobertas. Foi concluído que maiores densidades melhoram a resistência do compósito ao fogo, uma vez que produzem áreas queimadas menores, perdem menos massa e suportam um maior tempo de exposição ao fogo. Foi ainda demonstrado que a difusividade térmica e o calor específico têm um impacto maior no comportamento térmico ao fogo do que a condutividade térmica. Foi desenvolvido um protótipo meramente ilustrativo de modo a demonstrar como este tipo de materiais compósitos podem revestir tanques de armazenamento de hidrogénio de forma prática e simples. A criação deste tipo de revestimentos através deste tipo de materiais é uma inovação na área e ajuda a acelerar, de forma segura, a transição energética, sem nunca descurar os Objetivos de Desenvolvimento Sustentável (ODS) nem o Acordo Verde Europeu.2024-03-15T10:14:33Z2023-12-20T00:00:00Z2023-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41093engSousa, Guilherme José de Antunes einfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-18T01:48:55Zoai:ria.ua.pt:10773/41093Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:02:10.765700Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development of structures and materials suitable to protect hydrogen tanks |
title |
Development of structures and materials suitable to protect hydrogen tanks |
spellingShingle |
Development of structures and materials suitable to protect hydrogen tanks Sousa, Guilherme José de Antunes e Hydrogen storage Cork agglomerates Energy absorption Thermal insulation Mechanical characterization Finite element analysis (FEA) Numerical modelling |
title_short |
Development of structures and materials suitable to protect hydrogen tanks |
title_full |
Development of structures and materials suitable to protect hydrogen tanks |
title_fullStr |
Development of structures and materials suitable to protect hydrogen tanks |
title_full_unstemmed |
Development of structures and materials suitable to protect hydrogen tanks |
title_sort |
Development of structures and materials suitable to protect hydrogen tanks |
author |
Sousa, Guilherme José de Antunes e |
author_facet |
Sousa, Guilherme José de Antunes e |
author_role |
author |
dc.contributor.author.fl_str_mv |
Sousa, Guilherme José de Antunes e |
dc.subject.por.fl_str_mv |
Hydrogen storage Cork agglomerates Energy absorption Thermal insulation Mechanical characterization Finite element analysis (FEA) Numerical modelling |
topic |
Hydrogen storage Cork agglomerates Energy absorption Thermal insulation Mechanical characterization Finite element analysis (FEA) Numerical modelling |
description |
Dubbed the energy of the future, hydrogen shows excellent promise as a substitute for conventional fossil fuels. Nonetheless, the hydrogen chain safety protocols, and particularly its storage, are less well-established than those regarding fossil fuels, which limits hydrogen’s adoption and use. The primary goal of this project is to determine whether coating hydrogen storage tanks with composite materials based on cork agglomerates can improve their safety, especially in the event of fires, explosions, or impacts. It also aims to explore the relationship between these composites’ density and mechanical and thermal behaviour. The samples underwent thermal testing to assess the thermal conductivity, diffusivity and fire behaviour in addition to mechanical testing, particularly quasi-static compression and dynamic impact tests. Additionally, using Finite Element Analysis (FEA), a numerical model was created to verify the mechanical results. It was found that these materials are suitable for coating hydrogen storage tanks because they offer excellent thermal insulation, stimulate longer fire exposure times, and act as energy absorbers in the event of explosions or collisions. It has been discovered that lower densities encourage energy absorption during dynamic events. The validated numerical model supported these findings. Higher densities have been found to improve fire resistance since they produce smaller burned areas and less lost mass. It was also shown that diffusivity and specific heat have a more significant impact on thermal insulation against fire than thermal conductivity. A simple and suggestive prototype demonstrating how these materials can cover tanks was also produced as a result of this research. The creation of coatings using these materials is new in the field and aids in a safe acceleration of the energy transition without sacrificing any consideration for the Green Deal or the Sustainable Development Goals (SDGs). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-20T00:00:00Z 2023-12-20 2024-03-15T10:14:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41093 |
url |
http://hdl.handle.net/10773/41093 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138193988124672 |