Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs

Detalhes bibliográficos
Autor(a) principal: Pardo, Alberto
Data de Publicação: 2022
Outros Autores: Bakht, Syeda Mahwish, Gomez-Florit, Manuel, Rial, Ramón, Monteiro, Rosa Conceiçao Freitas, Teixeira, Simão P. B., Taboada, Pablo, Reis, R. L., Domingues, Rui Miguel Andrade, Gomes, Manuela E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/80818
Resumo: Recreating the extracellular matrix organization and cellular patterns of aniso-tropic tissues in bioengineered constructs remains a significant biofabrication challenge. Magnetically-assisted 3D bioprinting strategies can be exploited to fabricate biomimetic scaffolding systems, but they fail to provide control over the distribution of magnetic materials incorporated in the bioinks while pre-serving the fidelity of the designed composites. To overcome this dichotomy, the concepts of magnetically- and matrix-assisted 3D bioprinting are combined here. By allowing low viscosity bioinks to remain uncrosslinked after printing, this approach enables the arrangement of incorporated magnetically-responsive microfibers without compromising the resolution of printed structures before inducing their solidification. Moreover, the fine design of these magnetic microfillers allows the use of low inorganic contents and weak magnetic field strengths, minimizing the potentially associated risks. This strategy is evalu-ated for tendon tissue engineering purposes, demonstrating that the synergy between the biochemical and biophysical cues stemming from a tendon-like anisotropic fibrous microstructure, combined with remote magneto-mechanical stimulation during in vitro maturation, is effective on directing the fate of the encapsulated human adipose-derived stem cells toward tenogenic pheno-type. In summary, the developed strategy allows the fabrication of anisotropic high-resolution magnetic composites with remote stimulation functionalities, opening new horizons for tissue engineering applications.
id RCAP_aca225d754e3746ddbb7ffe3f5305e9d
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/80818
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs3D bioprintingAnisotropyMagnetic hydrogelsMagneto-mechanical stimulationRemote actuationTissue engineeringmagneto-mechanical stimulationsremote actuationsScience & TechnologyRecreating the extracellular matrix organization and cellular patterns of aniso-tropic tissues in bioengineered constructs remains a significant biofabrication challenge. Magnetically-assisted 3D bioprinting strategies can be exploited to fabricate biomimetic scaffolding systems, but they fail to provide control over the distribution of magnetic materials incorporated in the bioinks while pre-serving the fidelity of the designed composites. To overcome this dichotomy, the concepts of magnetically- and matrix-assisted 3D bioprinting are combined here. By allowing low viscosity bioinks to remain uncrosslinked after printing, this approach enables the arrangement of incorporated magnetically-responsive microfibers without compromising the resolution of printed structures before inducing their solidification. Moreover, the fine design of these magnetic microfillers allows the use of low inorganic contents and weak magnetic field strengths, minimizing the potentially associated risks. This strategy is evalu-ated for tendon tissue engineering purposes, demonstrating that the synergy between the biochemical and biophysical cues stemming from a tendon-like anisotropic fibrous microstructure, combined with remote magneto-mechanical stimulation during in vitro maturation, is effective on directing the fate of the encapsulated human adipose-derived stem cells toward tenogenic pheno-type. In summary, the developed strategy allows the fabrication of anisotropic high-resolution magnetic composites with remote stimulation functionalities, opening new horizons for tissue engineering applications.The authors acknowledge the financial support from project NORTE-01-0145-FEDER 000021 supported by Norte Portugal Regional Operational Program (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); the European Union Framework Program for Research and Innovation HORIZON 2020, under the Twinning grant agreement no. 810850-Achilles, European Research Council grant agreement no. 772817, Fundação para a Ciência e a Tecnologia for the PhD grants PD/BD/129403/2017 (S.M.B.) and PD/BD/143039/2018 (S.P.B.T.) financed through doctoral the program in Tissue Engineering, Regenerative Medicine and Stem Cells (TERM&SC), for 2020.03410. CEECIND (R.M.A.D.) and project PTDC/NAN-MAT/30595/2017. Xunta de Galicia and Ministerio de Universidades (Spain) for postdoctoral grants ED481B2019/025 (A.P.) and Margarita Salas (R.R.), respectively. Schematics in Figures 1 and 5 were created with BioRender.com.Wiley-VCH VerlagUniversidade do MinhoPardo, AlbertoBakht, Syeda MahwishGomez-Florit, ManuelRial, RamónMonteiro, Rosa Conceiçao FreitasTeixeira, Simão P. B.Taboada, PabloReis, R. L.Domingues, Rui Miguel AndradeGomes, Manuela E.2022-102022-10-01T00:00:00Z10000-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/80818engPardo A., Bakht S. M., Gomez-Florit M., Rial R., Monteiro R., Teixeira S. P. B., Taboada P., Reis R. L., Domingues R. M. A., Gomes M. E. Magnetically-Assisted 3D Bioprinting of Anisotropic Tissue-Mimetic Constructs, Advanced Functional Materials, Issue 2208940, doi:10.1002/adfm.202208940, 20221616-301X1616-302810.1002/adfm.2022089402208940https://onlinelibrary.wiley.com/doi/10.1002/adfm.202208940info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:54:28Zoai:repositorium.sdum.uminho.pt:1822/80818Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:43:57.843558Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs
title Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs
spellingShingle Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs
Pardo, Alberto
3D bioprinting
Anisotropy
Magnetic hydrogels
Magneto-mechanical stimulation
Remote actuation
Tissue engineering
magneto-mechanical stimulations
remote actuations
Science & Technology
title_short Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs
title_full Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs
title_fullStr Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs
title_full_unstemmed Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs
title_sort Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs
author Pardo, Alberto
author_facet Pardo, Alberto
Bakht, Syeda Mahwish
Gomez-Florit, Manuel
Rial, Ramón
Monteiro, Rosa Conceiçao Freitas
Teixeira, Simão P. B.
Taboada, Pablo
Reis, R. L.
Domingues, Rui Miguel Andrade
Gomes, Manuela E.
author_role author
author2 Bakht, Syeda Mahwish
Gomez-Florit, Manuel
Rial, Ramón
Monteiro, Rosa Conceiçao Freitas
Teixeira, Simão P. B.
Taboada, Pablo
Reis, R. L.
Domingues, Rui Miguel Andrade
Gomes, Manuela E.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Pardo, Alberto
Bakht, Syeda Mahwish
Gomez-Florit, Manuel
Rial, Ramón
Monteiro, Rosa Conceiçao Freitas
Teixeira, Simão P. B.
Taboada, Pablo
Reis, R. L.
Domingues, Rui Miguel Andrade
Gomes, Manuela E.
dc.subject.por.fl_str_mv 3D bioprinting
Anisotropy
Magnetic hydrogels
Magneto-mechanical stimulation
Remote actuation
Tissue engineering
magneto-mechanical stimulations
remote actuations
Science & Technology
topic 3D bioprinting
Anisotropy
Magnetic hydrogels
Magneto-mechanical stimulation
Remote actuation
Tissue engineering
magneto-mechanical stimulations
remote actuations
Science & Technology
description Recreating the extracellular matrix organization and cellular patterns of aniso-tropic tissues in bioengineered constructs remains a significant biofabrication challenge. Magnetically-assisted 3D bioprinting strategies can be exploited to fabricate biomimetic scaffolding systems, but they fail to provide control over the distribution of magnetic materials incorporated in the bioinks while pre-serving the fidelity of the designed composites. To overcome this dichotomy, the concepts of magnetically- and matrix-assisted 3D bioprinting are combined here. By allowing low viscosity bioinks to remain uncrosslinked after printing, this approach enables the arrangement of incorporated magnetically-responsive microfibers without compromising the resolution of printed structures before inducing their solidification. Moreover, the fine design of these magnetic microfillers allows the use of low inorganic contents and weak magnetic field strengths, minimizing the potentially associated risks. This strategy is evalu-ated for tendon tissue engineering purposes, demonstrating that the synergy between the biochemical and biophysical cues stemming from a tendon-like anisotropic fibrous microstructure, combined with remote magneto-mechanical stimulation during in vitro maturation, is effective on directing the fate of the encapsulated human adipose-derived stem cells toward tenogenic pheno-type. In summary, the developed strategy allows the fabrication of anisotropic high-resolution magnetic composites with remote stimulation functionalities, opening new horizons for tissue engineering applications.
publishDate 2022
dc.date.none.fl_str_mv 10000-01-01T00:00:00Z
2022-10
2022-10-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/80818
url https://hdl.handle.net/1822/80818
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pardo A., Bakht S. M., Gomez-Florit M., Rial R., Monteiro R., Teixeira S. P. B., Taboada P., Reis R. L., Domingues R. M. A., Gomes M. E. Magnetically-Assisted 3D Bioprinting of Anisotropic Tissue-Mimetic Constructs, Advanced Functional Materials, Issue 2208940, doi:10.1002/adfm.202208940, 2022
1616-301X
1616-3028
10.1002/adfm.202208940
2208940
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202208940
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley-VCH Verlag
publisher.none.fl_str_mv Wiley-VCH Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132187205828608