Optimization with linear complementarity constraints

Detalhes bibliográficos
Autor(a) principal: Júdice, Joaquim
Data de Publicação: 2014
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/109518
https://doi.org/10.1590/0101-7438.2014.034.03.0559
Resumo: A Mathematical Program with Linear Complementarity Constraints (MPLCC) is an optimization problem where a continuously differentiable function is minimized on a set defined by linear constraints and complementarity conditions on pairs of complementary variables. This problem finds many applications in several areas of science, engineering and economics and is also an important tool for the solution of some NP-hard structured and nonconvex optimization problems, such as bilevel, bilinear and nonconvex quadratic programs and the eigenvalue complementarity problem. In this paper some of the most relevant applications of the MPLCC and formulations of nonconvex optimization problems asMPLCCs are first presented. Algorithms for computing a feasible solution, a stationary point and a global minimum for the MPLCC are next discussed.Themost important nonlinear programmingmethods, complementarity algorithms, enumerative techniques and 0−1 integer programming approaches for the MPLCC are reviewed. Some comments about the computational performance of these algorithms and a few topics for future research are also included in this survey.
id RCAP_ad7e680d394d9d9fed9d8eb06db2a290
oai_identifier_str oai:estudogeral.uc.pt:10316/109518
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Optimization with linear complementarity constraintslinear complementarity problemsglobal optimizationnonlinear programminginteger programmingA Mathematical Program with Linear Complementarity Constraints (MPLCC) is an optimization problem where a continuously differentiable function is minimized on a set defined by linear constraints and complementarity conditions on pairs of complementary variables. This problem finds many applications in several areas of science, engineering and economics and is also an important tool for the solution of some NP-hard structured and nonconvex optimization problems, such as bilevel, bilinear and nonconvex quadratic programs and the eigenvalue complementarity problem. In this paper some of the most relevant applications of the MPLCC and formulations of nonconvex optimization problems asMPLCCs are first presented. Algorithms for computing a feasible solution, a stationary point and a global minimum for the MPLCC are next discussed.Themost important nonlinear programmingmethods, complementarity algorithms, enumerative techniques and 0−1 integer programming approaches for the MPLCC are reviewed. Some comments about the computational performance of these algorithms and a few topics for future research are also included in this survey.Sociedade Brasileira de Pesquisa Operacional2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/109518http://hdl.handle.net/10316/109518https://doi.org/10.1590/0101-7438.2014.034.03.0559eng0101-7438Júdice, Joaquiminfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-18T11:15:20Zoai:estudogeral.uc.pt:10316/109518Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:25:42.174161Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Optimization with linear complementarity constraints
title Optimization with linear complementarity constraints
spellingShingle Optimization with linear complementarity constraints
Júdice, Joaquim
linear complementarity problems
global optimization
nonlinear programming
integer programming
title_short Optimization with linear complementarity constraints
title_full Optimization with linear complementarity constraints
title_fullStr Optimization with linear complementarity constraints
title_full_unstemmed Optimization with linear complementarity constraints
title_sort Optimization with linear complementarity constraints
author Júdice, Joaquim
author_facet Júdice, Joaquim
author_role author
dc.contributor.author.fl_str_mv Júdice, Joaquim
dc.subject.por.fl_str_mv linear complementarity problems
global optimization
nonlinear programming
integer programming
topic linear complementarity problems
global optimization
nonlinear programming
integer programming
description A Mathematical Program with Linear Complementarity Constraints (MPLCC) is an optimization problem where a continuously differentiable function is minimized on a set defined by linear constraints and complementarity conditions on pairs of complementary variables. This problem finds many applications in several areas of science, engineering and economics and is also an important tool for the solution of some NP-hard structured and nonconvex optimization problems, such as bilevel, bilinear and nonconvex quadratic programs and the eigenvalue complementarity problem. In this paper some of the most relevant applications of the MPLCC and formulations of nonconvex optimization problems asMPLCCs are first presented. Algorithms for computing a feasible solution, a stationary point and a global minimum for the MPLCC are next discussed.Themost important nonlinear programmingmethods, complementarity algorithms, enumerative techniques and 0−1 integer programming approaches for the MPLCC are reviewed. Some comments about the computational performance of these algorithms and a few topics for future research are also included in this survey.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/109518
http://hdl.handle.net/10316/109518
https://doi.org/10.1590/0101-7438.2014.034.03.0559
url http://hdl.handle.net/10316/109518
https://doi.org/10.1590/0101-7438.2014.034.03.0559
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0101-7438
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134138917191680