Optimization with linear complementarity constraints
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/109518 https://doi.org/10.1590/0101-7438.2014.034.03.0559 |
Resumo: | A Mathematical Program with Linear Complementarity Constraints (MPLCC) is an optimization problem where a continuously differentiable function is minimized on a set defined by linear constraints and complementarity conditions on pairs of complementary variables. This problem finds many applications in several areas of science, engineering and economics and is also an important tool for the solution of some NP-hard structured and nonconvex optimization problems, such as bilevel, bilinear and nonconvex quadratic programs and the eigenvalue complementarity problem. In this paper some of the most relevant applications of the MPLCC and formulations of nonconvex optimization problems asMPLCCs are first presented. Algorithms for computing a feasible solution, a stationary point and a global minimum for the MPLCC are next discussed.Themost important nonlinear programmingmethods, complementarity algorithms, enumerative techniques and 0−1 integer programming approaches for the MPLCC are reviewed. Some comments about the computational performance of these algorithms and a few topics for future research are also included in this survey. |
id |
RCAP_ad7e680d394d9d9fed9d8eb06db2a290 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/109518 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimization with linear complementarity constraintslinear complementarity problemsglobal optimizationnonlinear programminginteger programmingA Mathematical Program with Linear Complementarity Constraints (MPLCC) is an optimization problem where a continuously differentiable function is minimized on a set defined by linear constraints and complementarity conditions on pairs of complementary variables. This problem finds many applications in several areas of science, engineering and economics and is also an important tool for the solution of some NP-hard structured and nonconvex optimization problems, such as bilevel, bilinear and nonconvex quadratic programs and the eigenvalue complementarity problem. In this paper some of the most relevant applications of the MPLCC and formulations of nonconvex optimization problems asMPLCCs are first presented. Algorithms for computing a feasible solution, a stationary point and a global minimum for the MPLCC are next discussed.Themost important nonlinear programmingmethods, complementarity algorithms, enumerative techniques and 0−1 integer programming approaches for the MPLCC are reviewed. Some comments about the computational performance of these algorithms and a few topics for future research are also included in this survey.Sociedade Brasileira de Pesquisa Operacional2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/109518http://hdl.handle.net/10316/109518https://doi.org/10.1590/0101-7438.2014.034.03.0559eng0101-7438Júdice, Joaquiminfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-18T11:15:20Zoai:estudogeral.uc.pt:10316/109518Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:25:42.174161Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimization with linear complementarity constraints |
title |
Optimization with linear complementarity constraints |
spellingShingle |
Optimization with linear complementarity constraints Júdice, Joaquim linear complementarity problems global optimization nonlinear programming integer programming |
title_short |
Optimization with linear complementarity constraints |
title_full |
Optimization with linear complementarity constraints |
title_fullStr |
Optimization with linear complementarity constraints |
title_full_unstemmed |
Optimization with linear complementarity constraints |
title_sort |
Optimization with linear complementarity constraints |
author |
Júdice, Joaquim |
author_facet |
Júdice, Joaquim |
author_role |
author |
dc.contributor.author.fl_str_mv |
Júdice, Joaquim |
dc.subject.por.fl_str_mv |
linear complementarity problems global optimization nonlinear programming integer programming |
topic |
linear complementarity problems global optimization nonlinear programming integer programming |
description |
A Mathematical Program with Linear Complementarity Constraints (MPLCC) is an optimization problem where a continuously differentiable function is minimized on a set defined by linear constraints and complementarity conditions on pairs of complementary variables. This problem finds many applications in several areas of science, engineering and economics and is also an important tool for the solution of some NP-hard structured and nonconvex optimization problems, such as bilevel, bilinear and nonconvex quadratic programs and the eigenvalue complementarity problem. In this paper some of the most relevant applications of the MPLCC and formulations of nonconvex optimization problems asMPLCCs are first presented. Algorithms for computing a feasible solution, a stationary point and a global minimum for the MPLCC are next discussed.Themost important nonlinear programmingmethods, complementarity algorithms, enumerative techniques and 0−1 integer programming approaches for the MPLCC are reviewed. Some comments about the computational performance of these algorithms and a few topics for future research are also included in this survey. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/109518 http://hdl.handle.net/10316/109518 https://doi.org/10.1590/0101-7438.2014.034.03.0559 |
url |
http://hdl.handle.net/10316/109518 https://doi.org/10.1590/0101-7438.2014.034.03.0559 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0101-7438 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134138917191680 |