Estimation of the maximal moment exponent with censored data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/27681 |
Resumo: | Heavy-tailed distributions have been used to model phenomena in which extreme events occur with high probability. In these type of occurrences, it is likely that extreme events are not observable after a certain threshold. Appropriate estimators are needed to deal with this type of censored data. We show that the well-known Hill-Hall estimator is unable to deal with censored data and yields highly biased estimates. We propose and study an unbiased modified maximum likelihood estimator, as well as a truncated tail regression estimator. We assess the expected value and the variance of these estimators in the cases of stable- and Pareto-distributed data. |
id |
RCAP_ad802bd51391d377a44cf2a7d4846466 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/27681 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Estimation of the maximal moment exponent with censored dataExtreme EventsHeavy TailHill EstimatorPareto DistributionStable DistributionHeavy-tailed distributions have been used to model phenomena in which extreme events occur with high probability. In these type of occurrences, it is likely that extreme events are not observable after a certain threshold. Appropriate estimators are needed to deal with this type of censored data. We show that the well-known Hill-Hall estimator is unable to deal with censored data and yields highly biased estimates. We propose and study an unbiased modified maximum likelihood estimator, as well as a truncated tail regression estimator. We assess the expected value and the variance of these estimators in the cases of stable- and Pareto-distributed data.Taylor & FrancisRepositório da Universidade de LisboaCrato, Nuno2023-04-28T20:59:07Z20002000-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/27681engCrato, Nuno .(2000). “Estimation of the maximal moment exponent with censored data”. Communications in Statistics - Simulation and Computation, Vol. 29, No. 4: pp. 1239-1253. (Search PDF in 2023)1532-4141 (Online)10.1080/03610910008813662info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-30T01:31:01Zoai:www.repository.utl.pt:10400.5/27681Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:50:29.460155Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Estimation of the maximal moment exponent with censored data |
title |
Estimation of the maximal moment exponent with censored data |
spellingShingle |
Estimation of the maximal moment exponent with censored data Crato, Nuno Extreme Events Heavy Tail Hill Estimator Pareto Distribution Stable Distribution |
title_short |
Estimation of the maximal moment exponent with censored data |
title_full |
Estimation of the maximal moment exponent with censored data |
title_fullStr |
Estimation of the maximal moment exponent with censored data |
title_full_unstemmed |
Estimation of the maximal moment exponent with censored data |
title_sort |
Estimation of the maximal moment exponent with censored data |
author |
Crato, Nuno |
author_facet |
Crato, Nuno |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Crato, Nuno |
dc.subject.por.fl_str_mv |
Extreme Events Heavy Tail Hill Estimator Pareto Distribution Stable Distribution |
topic |
Extreme Events Heavy Tail Hill Estimator Pareto Distribution Stable Distribution |
description |
Heavy-tailed distributions have been used to model phenomena in which extreme events occur with high probability. In these type of occurrences, it is likely that extreme events are not observable after a certain threshold. Appropriate estimators are needed to deal with this type of censored data. We show that the well-known Hill-Hall estimator is unable to deal with censored data and yields highly biased estimates. We propose and study an unbiased modified maximum likelihood estimator, as well as a truncated tail regression estimator. We assess the expected value and the variance of these estimators in the cases of stable- and Pareto-distributed data. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 2000-01-01T00:00:00Z 2023-04-28T20:59:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/27681 |
url |
http://hdl.handle.net/10400.5/27681 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Crato, Nuno .(2000). “Estimation of the maximal moment exponent with censored data”. Communications in Statistics - Simulation and Computation, Vol. 29, No. 4: pp. 1239-1253. (Search PDF in 2023) 1532-4141 (Online) 10.1080/03610910008813662 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131584690913280 |