Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidos

Detalhes bibliográficos
Autor(a) principal: Tavares, Dulce Sofia Cardoso
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/16242
Resumo: A engenharia de tecidos tem adoptado diferentes estratégias de melhoria, tendo como objectivo a procura de soluções que permitam mimetizar cada ver melhor as condições ex-vivo, de regeneração de tecidos. Uma das mais recentes estratégias consiste no desenvolvimento de estruturas porosas tridimensionais, que servem como suportes temporários para a colocação de células, permitindo a sua adesão, proliferação e produção de matriz extracelular, que conduzirá à formação de novo tecido. Neste trabalho foram preparados dois tipos de scaffolds compósitos com possíveis aplicações em engenharia de tecidos. Num dos scaffolds foi utilizado ácido poli (L-láctico) (PLLA) como matriz e hidroxiapatite (HAp) como enchimento inorgânico e noutro, ácido poli (L-láctico) como matriz e um vidro bioactivo (T14P43) como enchimento inorgânico. A escolha do PLLA deve-se ao facto de ser um polímero sintético biodegradável, biocompatível e piezeléctrico, sendo esta última característica, também identificada no tecido ósseo. A escolha das fases de enchimento, hidroxiapatite ou vidro bioactivo, deve-se ao facto da hidroxiapatite ser um material com capacidade de osteocondução e elevada biocompatibilidade e, no caso do vidro, este possui características bioactivas, adequadas para aplicações em contacto com o tecido ósseo. O processo utilizado para a fabricação dos scaffolds baseou-se na separação de fases termicamente induzida (TIPS) de soluções de 5,5 ou 6,5% (m/m) PLLA/dioxano/água com hidroxiapatite e PLLA/dioxano/água com vidro bioactivo, variando os seguintes parâmetros: teor de hidroxiapatite (0%, 30% e 50% (m/m)) e vidro bioactivo (0% e 30% (m/m)), temperatura de mistura (75 e 80ºC), tempo de mistura (15 e 90 minutos) e tempo de separação de fases (10 e 60 minutos). A morfologia dos scaffolds foi avaliada por microscopia eléctrónica de varrimento (SEM), o potencial biactivo dos compósitos foi testado com a imersão em fluido fisiológico sintético (SBF: simulated body fluid), por períodos de tempo variados até 24 dias e as propriedades mecânicas foram determinadas através de ensaios de compressão. Obtiveram-se scaffolds com morfologias diferentes conforme o conteúdo de hidroxiapatite, verificando-se uma diminuição do tamanho de poros com a adição de hidroxiaptite. Os scaffolds preparados com vidro apresentaram um tamanho de poros maior que os de hidroxiapatite e nenhuns exibiram propriedades bioactivas quando imersos em SBF. Este comportamento, juntamente com as propriedades mecânicas encontradas sugerem que as estruturas porosas desenvolvidas serão indicadas para aplicações em engenharia de tecidos, em situações preferencialmente ex-vivo, como suportes temporários de células.
id RCAP_adbe86225ce74d80e3830fc9d48426ec
oai_identifier_str oai:repositorio.ucp.pt:10400.14/16242
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidosDomínio/Área Científica::Engenharia e Tecnologia::Biotecnologia IndustrialA engenharia de tecidos tem adoptado diferentes estratégias de melhoria, tendo como objectivo a procura de soluções que permitam mimetizar cada ver melhor as condições ex-vivo, de regeneração de tecidos. Uma das mais recentes estratégias consiste no desenvolvimento de estruturas porosas tridimensionais, que servem como suportes temporários para a colocação de células, permitindo a sua adesão, proliferação e produção de matriz extracelular, que conduzirá à formação de novo tecido. Neste trabalho foram preparados dois tipos de scaffolds compósitos com possíveis aplicações em engenharia de tecidos. Num dos scaffolds foi utilizado ácido poli (L-láctico) (PLLA) como matriz e hidroxiapatite (HAp) como enchimento inorgânico e noutro, ácido poli (L-láctico) como matriz e um vidro bioactivo (T14P43) como enchimento inorgânico. A escolha do PLLA deve-se ao facto de ser um polímero sintético biodegradável, biocompatível e piezeléctrico, sendo esta última característica, também identificada no tecido ósseo. A escolha das fases de enchimento, hidroxiapatite ou vidro bioactivo, deve-se ao facto da hidroxiapatite ser um material com capacidade de osteocondução e elevada biocompatibilidade e, no caso do vidro, este possui características bioactivas, adequadas para aplicações em contacto com o tecido ósseo. O processo utilizado para a fabricação dos scaffolds baseou-se na separação de fases termicamente induzida (TIPS) de soluções de 5,5 ou 6,5% (m/m) PLLA/dioxano/água com hidroxiapatite e PLLA/dioxano/água com vidro bioactivo, variando os seguintes parâmetros: teor de hidroxiapatite (0%, 30% e 50% (m/m)) e vidro bioactivo (0% e 30% (m/m)), temperatura de mistura (75 e 80ºC), tempo de mistura (15 e 90 minutos) e tempo de separação de fases (10 e 60 minutos). A morfologia dos scaffolds foi avaliada por microscopia eléctrónica de varrimento (SEM), o potencial biactivo dos compósitos foi testado com a imersão em fluido fisiológico sintético (SBF: simulated body fluid), por períodos de tempo variados até 24 dias e as propriedades mecânicas foram determinadas através de ensaios de compressão. Obtiveram-se scaffolds com morfologias diferentes conforme o conteúdo de hidroxiapatite, verificando-se uma diminuição do tamanho de poros com a adição de hidroxiaptite. Os scaffolds preparados com vidro apresentaram um tamanho de poros maior que os de hidroxiapatite e nenhuns exibiram propriedades bioactivas quando imersos em SBF. Este comportamento, juntamente com as propriedades mecânicas encontradas sugerem que as estruturas porosas desenvolvidas serão indicadas para aplicações em engenharia de tecidos, em situações preferencialmente ex-vivo, como suportes temporários de células.Tissue engineering has adopted different strategies, with the aim of finding solutions that allow the improvement of the ex-vivo conditions that mimic the regeneration of tissues. One of the most recent strategies consist in the development of three dimensional porous structures that serve as temporary supports for the seeding of cells, allowing their adhesion, proliferation and extracellular matrix production, leading to the formation of new tissue. In this work two types of composite scaffolds with potential applications in tissue engineering were prepared the scaffolds. In one of poly (L-lactic acid) (PLLA) was used as matrix and hydroxyapatite (HAp) as inorganic filler and in another poly (L-lactic acid) served as matrix and a bioactive glass (T14P43) as inorganic filler. PLLA was chosen because it is a biodegradable synthetic polymer, biocompatible and piezoelectric, a feature also identified in bone tissue. The choice of the filling phases, a bioactive glass or hydroxyapatite, was due to the fact that hydroxyapatite exhibit osteoconductive capacity and has a high biocompatibility and the bioactive glass has bioactive characteristics appropriate for application in contact with bone tissue. The process used to manufacture the scaffold was based on a thermally induced phase separation technique (TIPS) of solutions of 5,5 or 6,5 % (w/w) PLLA/dioxane/water with hydroxyapatite and PLLA/dioxane/water with bioactive glass, varying the following parameters: content of hydroxyapatite (0%, 30% and 50% (m/m)) and bioactive glass (0% and 30% (m/m)), temperature of mixture (75 and 80ºC), time of mixing (15 and 90 minutes) and time for phase separation (10 and 60 minutes). The morphology of the scaffolds was evaluated by scanning electron microscopy (SEM), the bioactive potential of the composites was tested by immersion in synthetic fluid (SBF: simulated body fluid), for periods to 24 days and the mechanical properties were determined by compression testing. Scaffolds with different morphology in were obtained depending on the hydroxyapatite, content with pore size decreasing with the addition of hydroxyapatite. Scaffolds prepared with glass as filler presented pore sizes higher than those containing hydroxyapatite. No bioactive behavior was found in both types of scaffolds when immersed in SBF. This fact, together with the measured mechanical properties suggest that the porous structures developed in this work may have applications in tissue engineering strategies preferably ex-vivo, namely as temporary support for cells.Fernandes, Maria Helena Figueira VazVeritati - Repositório Institucional da Universidade Católica PortuguesaTavares, Dulce Sofia Cardoso2015-01-13T15:06:07Z2014-06-0920142014-06-09T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.14/16242TID:201533260porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-12T17:21:42Zoai:repositorio.ucp.pt:10400.14/16242Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:13:28.417391Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidos
title Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidos
spellingShingle Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidos
Tavares, Dulce Sofia Cardoso
Domínio/Área Científica::Engenharia e Tecnologia::Biotecnologia Industrial
title_short Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidos
title_full Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidos
title_fullStr Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidos
title_full_unstemmed Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidos
title_sort Fabricação e caracterização de scaffolds compósitos de polímero-hidroxiapatite e polímero-videro para engenharia de tecidos
author Tavares, Dulce Sofia Cardoso
author_facet Tavares, Dulce Sofia Cardoso
author_role author
dc.contributor.none.fl_str_mv Fernandes, Maria Helena Figueira Vaz
Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Tavares, Dulce Sofia Cardoso
dc.subject.por.fl_str_mv Domínio/Área Científica::Engenharia e Tecnologia::Biotecnologia Industrial
topic Domínio/Área Científica::Engenharia e Tecnologia::Biotecnologia Industrial
description A engenharia de tecidos tem adoptado diferentes estratégias de melhoria, tendo como objectivo a procura de soluções que permitam mimetizar cada ver melhor as condições ex-vivo, de regeneração de tecidos. Uma das mais recentes estratégias consiste no desenvolvimento de estruturas porosas tridimensionais, que servem como suportes temporários para a colocação de células, permitindo a sua adesão, proliferação e produção de matriz extracelular, que conduzirá à formação de novo tecido. Neste trabalho foram preparados dois tipos de scaffolds compósitos com possíveis aplicações em engenharia de tecidos. Num dos scaffolds foi utilizado ácido poli (L-láctico) (PLLA) como matriz e hidroxiapatite (HAp) como enchimento inorgânico e noutro, ácido poli (L-láctico) como matriz e um vidro bioactivo (T14P43) como enchimento inorgânico. A escolha do PLLA deve-se ao facto de ser um polímero sintético biodegradável, biocompatível e piezeléctrico, sendo esta última característica, também identificada no tecido ósseo. A escolha das fases de enchimento, hidroxiapatite ou vidro bioactivo, deve-se ao facto da hidroxiapatite ser um material com capacidade de osteocondução e elevada biocompatibilidade e, no caso do vidro, este possui características bioactivas, adequadas para aplicações em contacto com o tecido ósseo. O processo utilizado para a fabricação dos scaffolds baseou-se na separação de fases termicamente induzida (TIPS) de soluções de 5,5 ou 6,5% (m/m) PLLA/dioxano/água com hidroxiapatite e PLLA/dioxano/água com vidro bioactivo, variando os seguintes parâmetros: teor de hidroxiapatite (0%, 30% e 50% (m/m)) e vidro bioactivo (0% e 30% (m/m)), temperatura de mistura (75 e 80ºC), tempo de mistura (15 e 90 minutos) e tempo de separação de fases (10 e 60 minutos). A morfologia dos scaffolds foi avaliada por microscopia eléctrónica de varrimento (SEM), o potencial biactivo dos compósitos foi testado com a imersão em fluido fisiológico sintético (SBF: simulated body fluid), por períodos de tempo variados até 24 dias e as propriedades mecânicas foram determinadas através de ensaios de compressão. Obtiveram-se scaffolds com morfologias diferentes conforme o conteúdo de hidroxiapatite, verificando-se uma diminuição do tamanho de poros com a adição de hidroxiaptite. Os scaffolds preparados com vidro apresentaram um tamanho de poros maior que os de hidroxiapatite e nenhuns exibiram propriedades bioactivas quando imersos em SBF. Este comportamento, juntamente com as propriedades mecânicas encontradas sugerem que as estruturas porosas desenvolvidas serão indicadas para aplicações em engenharia de tecidos, em situações preferencialmente ex-vivo, como suportes temporários de células.
publishDate 2014
dc.date.none.fl_str_mv 2014-06-09
2014
2014-06-09T00:00:00Z
2015-01-13T15:06:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/16242
TID:201533260
url http://hdl.handle.net/10400.14/16242
identifier_str_mv TID:201533260
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131812919771136