Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/53980 |
Resumo: | Permafrost coasts are experiencing accelerated erosion in response to above average warming in the Arctic resulting in local, regional, and global consequences. However, Arctic coasts are expansive in scale, constituting 30–34% of Earth’s coastline, and represent a particular challenge for wide-scale, high temporal measurement and monitoring. This study addresses the potential strengths and limitations of an object-based approach to integrate with an automated workflow by assessing the accuracy of coastal classifications and subsequent feature extraction of coastal indicator features. We tested three object-based classifications; thresholding, supervised, and a deep learning model using convolutional neural networks, focusing on a Pleaides satellite scene in the Western Canadian Arctic. Multiple spatial resolutions (0.6, 1, 2.5, 5, 10, and 30 m/pixel) and segmentation scales (100, 200, 300, 400, 500, 600, 700, and 800) were tested to understand the wider applicability across imaging platforms. We achieved classification accuracies greater than 85% for the higher image resolution scenarios using all classification methods. Coastal features, waterline and tundra, or vegetation, line, generated from image classifications were found to be within the image uncertainty 60% of the time when compared to reference features. Further, for very high resolution scenarios, segmentation scale did not affect classification accuracy; however, a smaller segmentation scale (i.e., smaller image objects) led to improved feature extraction. Similar results were generated across classification approaches with a slight improvement observed when using deep learning CNN, which we also suggest has wider applicability. Overall, our study provides a promising contribution towards broad scale monitoring of Arctic coastal erosion. |
id |
RCAP_adc3425101386d118eefb32eb477ec86 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/53980 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multiscale Object-Based Classification and Feature Extraction along Arctic CoastsArctic coastal erosionCoastal feature extractionCoastal classificationObject-based image analysisGEOBIAPermafrost coasts are experiencing accelerated erosion in response to above average warming in the Arctic resulting in local, regional, and global consequences. However, Arctic coasts are expansive in scale, constituting 30–34% of Earth’s coastline, and represent a particular challenge for wide-scale, high temporal measurement and monitoring. This study addresses the potential strengths and limitations of an object-based approach to integrate with an automated workflow by assessing the accuracy of coastal classifications and subsequent feature extraction of coastal indicator features. We tested three object-based classifications; thresholding, supervised, and a deep learning model using convolutional neural networks, focusing on a Pleaides satellite scene in the Western Canadian Arctic. Multiple spatial resolutions (0.6, 1, 2.5, 5, 10, and 30 m/pixel) and segmentation scales (100, 200, 300, 400, 500, 600, 700, and 800) were tested to understand the wider applicability across imaging platforms. We achieved classification accuracies greater than 85% for the higher image resolution scenarios using all classification methods. Coastal features, waterline and tundra, or vegetation, line, generated from image classifications were found to be within the image uncertainty 60% of the time when compared to reference features. Further, for very high resolution scenarios, segmentation scale did not affect classification accuracy; however, a smaller segmentation scale (i.e., smaller image objects) led to improved feature extraction. Similar results were generated across classification approaches with a slight improvement observed when using deep learning CNN, which we also suggest has wider applicability. Overall, our study provides a promising contribution towards broad scale monitoring of Arctic coastal erosion.MDPIRepositório da Universidade de LisboaClark, AndrewMoorman, BrianWhalen, DustinVieira, Gonçalo2022-07-27T13:47:57Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/53980engClark, A., Moorman, B., Whalen, D. & Vieira, G. (2022). Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts. Remote Sensing, 14(13), 2982. http://dx.doi.org/10.3390/rs1413298210.3390/rs141329822072-4292info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:00:19Zoai:repositorio.ul.pt:10451/53980Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:04:58.510704Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts |
title |
Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts |
spellingShingle |
Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts Clark, Andrew Arctic coastal erosion Coastal feature extraction Coastal classification Object-based image analysis GEOBIA |
title_short |
Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts |
title_full |
Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts |
title_fullStr |
Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts |
title_full_unstemmed |
Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts |
title_sort |
Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts |
author |
Clark, Andrew |
author_facet |
Clark, Andrew Moorman, Brian Whalen, Dustin Vieira, Gonçalo |
author_role |
author |
author2 |
Moorman, Brian Whalen, Dustin Vieira, Gonçalo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Clark, Andrew Moorman, Brian Whalen, Dustin Vieira, Gonçalo |
dc.subject.por.fl_str_mv |
Arctic coastal erosion Coastal feature extraction Coastal classification Object-based image analysis GEOBIA |
topic |
Arctic coastal erosion Coastal feature extraction Coastal classification Object-based image analysis GEOBIA |
description |
Permafrost coasts are experiencing accelerated erosion in response to above average warming in the Arctic resulting in local, regional, and global consequences. However, Arctic coasts are expansive in scale, constituting 30–34% of Earth’s coastline, and represent a particular challenge for wide-scale, high temporal measurement and monitoring. This study addresses the potential strengths and limitations of an object-based approach to integrate with an automated workflow by assessing the accuracy of coastal classifications and subsequent feature extraction of coastal indicator features. We tested three object-based classifications; thresholding, supervised, and a deep learning model using convolutional neural networks, focusing on a Pleaides satellite scene in the Western Canadian Arctic. Multiple spatial resolutions (0.6, 1, 2.5, 5, 10, and 30 m/pixel) and segmentation scales (100, 200, 300, 400, 500, 600, 700, and 800) were tested to understand the wider applicability across imaging platforms. We achieved classification accuracies greater than 85% for the higher image resolution scenarios using all classification methods. Coastal features, waterline and tundra, or vegetation, line, generated from image classifications were found to be within the image uncertainty 60% of the time when compared to reference features. Further, for very high resolution scenarios, segmentation scale did not affect classification accuracy; however, a smaller segmentation scale (i.e., smaller image objects) led to improved feature extraction. Similar results were generated across classification approaches with a slight improvement observed when using deep learning CNN, which we also suggest has wider applicability. Overall, our study provides a promising contribution towards broad scale monitoring of Arctic coastal erosion. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-27T13:47:57Z 2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/53980 |
url |
http://hdl.handle.net/10451/53980 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Clark, A., Moorman, B., Whalen, D. & Vieira, G. (2022). Multiscale Object-Based Classification and Feature Extraction along Arctic Coasts. Remote Sensing, 14(13), 2982. http://dx.doi.org/10.3390/rs14132982 10.3390/rs14132982 2072-4292 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134601390587904 |